SYNERGIES BETWEEN RADIAL VELOCITIES AND THE ARIEL MISSION

ALEXANDRE SANTERNE

AIX-MARSEILLE UNIVERSITY / LABORATOIRE D’ASTROPHYSIQUE DE MARSEILLE

@A_SANTERNE
SYNERGIES BETWEEN RADIAL VELOCITIES AND THE ARIEL MISSION

ALEXANDRE SANTERNE

AIX-MARSEILLE UNIVERSITY / LABORATOIRE D’ASTROPHYSIQUE DE MARSEILLE

Why ARIEL needs RVs?
What ARIEL wants as input:

- The **mass** of exoplanets
- **Precise ephemerides** for both the primary and secondary transits
- To know the host **star activity**
ARIEL needs planets’ mass

Scale Height: $H = \frac{kT}{\mu mg}$
ARIEL needs planets’ mass

Scale Height \[H = \frac{kT}{\mu mg} \] Planet mass
ARIEL needs planets’ mass

Scale Height \[H = \frac{kT}{\mu mg} \]

Planet mass

\[K \propto \frac{m_p \sin i}{P^{\frac{1}{3}} M_*^{\frac{2}{3}} \sqrt{1 - e^2}} \]

Mayor & Queloz (1995)
Mass of (giant) exoplanets might be retrieved from transmission spectroscopic data

De Wit & Seager (2013)

Batalha et al. (2017, 2019)
Mass of (giant) exoplanets might be retrieved from transmission spectroscopic data

De Wit & Seager (2013)

This might introduce bias in the statistical results

Batalha et al. (2017, 2019)
Mass of (giant) exoplanets might be retrieved from transmission spectroscopic data

De Wit & Seager (2013)

THIS MIGHT INTRODUCE BIAS IN THE STATISTICAL RESULTS

Precise masses from RVs are still relevant in the context of ARIEL!

Batalha et al. (2017, 2019)
ARIEL wants precisely the ephemerides of transits
ARIEL wants precisely the ephemerides of transits

- By the time ARIEL will be launched, many transit ephemerides will be lost
ARIEL wants precisely the ephemerides of transits

- By the time ARIEL will be launched, many transit ephemerides will be lost.
- Amateur astronomers might help to maintain the ephemerides.
ARIEL wants precisely the ephemerides of transits

- By the time ARIEL will be launched, many transit ephemerides will be lost
- Amateur astronomers might help to maintain the ephemerides
- RVs might also contribute for the long-period planets (P>10d) or the shallowest transits
Improving ephemerides: the CHEOPS example

- **CHEOPS** transit-search program targeting RV-discovered exoplanets also needs precise ephemerides
- Few **SOPHIE** re-observations substantially improved predicted transit ephemerides
Improving ephemerides: the CHEOPS example

- **CHEOPS** transit-search program targeting RV-discovered exoplanets also needs precise ephemerides

- Few **SOPHIE** re-observations substantially improved predicted transit ephemerides

<table>
<thead>
<tr>
<th>Planet</th>
<th>Number of observations</th>
<th>Last observation [BJD]</th>
<th>T_0 [BJD]</th>
<th>P [days]</th>
</tr>
</thead>
<tbody>
<tr>
<td>HD 46974 c</td>
<td>63 (HIRES) + 21 (SOPHIE)</td>
<td>53753.85</td>
<td>58119.14 ± 3.1</td>
<td>4.9493 ± 0.0002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>57468.41</td>
<td>58123.18 ± 0.05</td>
<td>4.9474 ± 0.0000</td>
</tr>
<tr>
<td>HD 3651 b (k1)</td>
<td>68 (HIRES) + 15 (SOPHIE)</td>
<td>52608.73</td>
<td>58090.41 ± 1.85</td>
<td>62.2706 ± 0.018</td>
</tr>
<tr>
<td></td>
<td></td>
<td>57417.30</td>
<td>58089.13 ± 0.7</td>
<td>62.2548 ± 0.0072</td>
</tr>
<tr>
<td>Gl 176 b</td>
<td>98 (HIRES et HARPS) + 25 (SOPHIE)</td>
<td>54545.77</td>
<td>58122.54 ± 0.34</td>
<td>8.7758 ± 0.0006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>57468.35</td>
<td>58122.32 ± 0.24</td>
<td>8.7754 ± 0.0004</td>
</tr>
</tbody>
</table>

Bastien Courcol 2016 (PhD thesis)
Improving ephemerides: the CHEOPS example

- **CHEOPS** transit-search program targeting RV-discovered exoplanets also needs precise ephemerides
- Few **SOPHIE** re-observations substantially improved predicted transit ephemerides

<table>
<thead>
<tr>
<th>Planet</th>
<th>Number of observations</th>
<th>Last observation [BJD]</th>
<th>T_0 [BJD]</th>
<th>P [days]</th>
</tr>
</thead>
<tbody>
<tr>
<td>HD 46974 c</td>
<td>63 (HIRES) + 21 (SOPHIE)</td>
<td>53753.85 57468.41</td>
<td>58119.14 ± 3.1 58123.18 ± 0.05</td>
<td>4.9493 ± 0.0002 4.9474 ± 0.00000</td>
</tr>
<tr>
<td>HD 3651 b (k1)</td>
<td>68 (HIRES) + 15 (SOPHIE)</td>
<td>52608.73 57417.30</td>
<td>58090.41 ± 1.85 58089.13 ± 0.7</td>
<td>62.2706 ± 0.018 62.2548 ± 0.0072</td>
</tr>
<tr>
<td>Gl 176 b</td>
<td>98 (HIRES et HARPS) + 25 (SOPHIE)</td>
<td>54545.77 57468.35</td>
<td>58122.54 ± 0.34 58122.32 ± 0.24</td>
<td>8.7758 ± 0.0006 8.7754 ± 0.0004</td>
</tr>
</tbody>
</table>

Bastien Courcol 2016 (PhD thesis)
Improving ephemerides: the CHEOPS example

- **CHEOPS** transit-search program targeting RV-discovered exoplanets also needs precise ephemerides
- Few **SOPHIE** re-observations substantially improved predicted transit ephemerides

<table>
<thead>
<tr>
<th>Planet</th>
<th>Number of observations</th>
<th>Last observation [BJD]</th>
<th>T_0 [BJD]</th>
<th>P [days]</th>
</tr>
</thead>
<tbody>
<tr>
<td>HD 46974 c</td>
<td>63 (HIRES) + 21 (SOPHIE)</td>
<td>53753.85 57468.41</td>
<td>58119.14 ± 3.1</td>
<td>4.9493 ± 0.0002</td>
</tr>
<tr>
<td>HD 3651 b (k1)</td>
<td>68 (HIRES) + 15 (SOPHIE)</td>
<td>52608.73 57417.30</td>
<td>58090.41 ± 1.85</td>
<td>62.2706 ± 0.018</td>
</tr>
<tr>
<td>Gl 176 b</td>
<td>98 (HIRES et HARPS) + 25 (SOPHIE)</td>
<td>54545.77 57468.35</td>
<td>58122.54 ± 0.34</td>
<td>8.7758 ± 0.0006</td>
</tr>
</tbody>
</table>

Bastien Courcol 2016 (PhD thesis)
Orbital eccentricities
and secondary transits
Orbital eccentricities and secondary transits

• **Eccentric orbit** might prevent a transiting planet to be occulted by the star (as seen from the Earth)
Orbital eccentricities and secondary transits

• **Eccentric orbit** might prevent a transiting planet to be occulted by the star (as seen from the Earth)

• **Eccentricity** of transiting exoplanets is mostly unknown or poorly determined

source: NASA exoplanet archive
Orbital eccentricities and secondary transits

- **Eccentric orbit** might prevent a transiting planet to be occulted by the star (as seen from the Earth)
- **Eccentricity** of transiting exoplanets is mostly unknown or poorly determined

160 / 850 giant (R>0.3R_{\text{jup}}) planets

RVs can improve orbital eccentricities of **ARIEL** targets

Source: NASA exoplanet archive
Period determination of TESS mono-transit
Period determination of TESS mono-transit

- **TESS** is finding interesting **warm giants** with periods > 10 days. They transited **only once** (aka mono-transit) in the 27-days TESS sectors (unless close to CVZ).
Period determination of TESS mono-transit

• **TESS** is finding interesting **warm giants** with periods > 10 days. They transited **only once** (aka mono-transit) in the 27-days TESS sectors (unless close to CVZ).

• On-going **SOPHIE** programme on **TESS giant monotransits**. First planets detected!

![Graph showing ΔRV vs Date for a Half Jupiter-mass planet at 18 days.](image)
Period determination of TESS mono-transit

• **TESS** is finding interesting **warm giants** with periods > 10 days. They transited only once (aka mono-transit) in the 27-days TESS sectors (unless close to CVZ).

• On-going **SOPHIE** programme on **TESS** giant monotransits. First planets detected!

Next step: use **CHEOPS** or ground-based observatories to detect a second transit

Half Jupiter-mass planet @ 18 days
TESS extension on monotransit
TESS extension on monotransit

• During TESS' extension, a second transit might be detected, a few years after the first transit. It results in a series of possible ephemerides (Δt and all harmonics)
TESS extension on monotransit

- During **TESS’ extension**, a **second transit** might be detected, a few years after the first transit. It results in a series of **possible ephemerides** (Δt and all harmonics).

- Detecting the planetary signal with **RVs** help to select the **correct period** among all the solutions.
TESS extension on monotransit

- During *TESS' extension*, a second transit might be detected, a few years after the first transit. It results in a series of possible ephemerides (Δt and all harmonics).

- Detecting the planetary signal with **RVs** help to select the correct period among all the solutions.

 The case of **HIP41378** …
The case of HIP41378 (V=8.9 - K=7.7)

- Detection of **5 transiting planets** by K2 in **2015**
- Planets b & c are multi-transit while d, e, & f are mono-transit

Vanderburg et al. (2016)
The case of HIP41378 (II)

- **Reobservation** by K2 in 2018 (3 years later)
- Detection of a second transit for planets d & f: 23 different solutions for each planet (519 combinations)

![Graphs showing possible orbital periods for HIP 41378 d and f](image)

Possible orbital periods for HIP 41378 d

<table>
<thead>
<tr>
<th>Orbital Period (days)</th>
<th>Normalized Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>1113.4465 ± 0.0034</td>
<td>< 0.1 %</td>
</tr>
<tr>
<td>556.7233 ± 0.0017</td>
<td>< 0.1 %</td>
</tr>
<tr>
<td>371.1488 ± 0.0011</td>
<td>0.1 %</td>
</tr>
<tr>
<td>278.3616 ± 0.0009</td>
<td>0.5 %</td>
</tr>
<tr>
<td>222.6893 ± 0.0007</td>
<td>1.1 %</td>
</tr>
<tr>
<td>185.5744 ± 0.0006</td>
<td>2.4 %</td>
</tr>
<tr>
<td>159.0638 ± 0.0005</td>
<td>4.1 %</td>
</tr>
<tr>
<td>139.1808 ± 0.0004</td>
<td>5.7 %</td>
</tr>
<tr>
<td>123.7163 ± 0.0004</td>
<td>6.7 %</td>
</tr>
<tr>
<td>111.3447 ± 0.0003</td>
<td>7.1 %</td>
</tr>
<tr>
<td>101.2224 ± 0.0003</td>
<td>7.1 %</td>
</tr>
<tr>
<td>92.7872 ± 0.0003</td>
<td>7.0 %</td>
</tr>
<tr>
<td>85.6497 ± 0.0003</td>
<td>6.9 %</td>
</tr>
<tr>
<td>79.5319 ± 0.0002</td>
<td>6.8 %</td>
</tr>
<tr>
<td>74.2298 ± 0.0002</td>
<td>6.8 %</td>
</tr>
<tr>
<td>69.5904 ± 0.0002</td>
<td>6.3 %</td>
</tr>
<tr>
<td>65.4969 ± 0.0002</td>
<td>5.9 %</td>
</tr>
<tr>
<td>61.8581 ± 0.0002</td>
<td>5.5 %</td>
</tr>
<tr>
<td>58.6024 ± 0.0002</td>
<td>5.1 %</td>
</tr>
<tr>
<td>55.6723 ± 0.0002</td>
<td>4.8 %</td>
</tr>
<tr>
<td>53.0213 ± 0.0002</td>
<td>4.5 %</td>
</tr>
<tr>
<td>50.6112 ± 0.0002</td>
<td>4.2 %</td>
</tr>
<tr>
<td>48.4107 ± 0.0001</td>
<td>1.4 %</td>
</tr>
</tbody>
</table>

Becker et al. (2018) ; Berardo et al. (2019)
The case of HIP41378 (III)
The case of HIP41378 (III)

- Intensive RVs observations (450+ epochs) by 4 stabilised spectrographs over 4 years (HARPS, HARPS-N, HIRES, PFS)
The case of HIP41378 (III)

- Intensive RVs observations (450+ epochs) by 4 stabilised spectrographs over 4 years (HARPS, HARPS-N, HIRES, PFS)

- Detection of the Doppler signals of HIP41478 b, c, and f (+ non-transiting planet g)
The case of HIP41378 (III)

- Intensive RVs observations (450+ epochs) by 4 stabilised spectrographs over 4 years (HARPS, HARPS-N, HIRES, PFS)

- Detection of the Doppler signals of HIP41378 b, c, and f (+ non-transiting planet g)

- RV signal of planet f perfectly matches with only one solution allowed by the photometry (the 542-day solution)

Santerne et al. (2020)
HIP41378: a good system for ARIEL (\& JWST)

Santerne et al. (2020) (Not for phase curves)
ARIEL needs to know the stellar variability
ARIEL needs to know the stellar variability

- **Stellar activity** is a well known limitation to the interpretation of transmission spectroscopy data
ARIEL needs to know the stellar variability

- **Stellar activity** is a well known limitation to the interpretation of transmission spectroscopy data.

- The **optical channels** of ARIEL will be very important for occulted star spot/faculae.

CoRoT-2 ; Bruno et al. (2016)
Disentangling spot vs faculae

• To understand the impact of stellar activity on transit data, we need to monitor the host stars **over one rotation**.

• Impossible to do with **ARIEL**

HIGH-RESOLUTION SPECTROSCOPY MIGHT HELP

CoRoT-2; Bruno et al. (2016)
Spectroscopic diagnoses for stellar activity

- Chromospheric emission (CaII H&K, Hα, Na D, etc…)
- Line bisector & width
- Spectropolarimetry (Zeeman effect)
Spectroscopic diagnoses for stellar activity

- Chromospheric emission (CaII H&K, Hα, Na D, etc…)
- Line bisector & width
- Spectropolarimetry (Zeeman effect)

Still need to understand the physical link between these spectroscopic diagnoses and the spot / faculae configuration + impact on transmission spectroscopy
Spectroscopic diagnoses for stellar activity

• Chromospheric emission (CaII H&K, Hα, Na D, etc…)

• Line bisector & width

• Spectropolarimetry (Zeeman effect)

Still need to understand the physical link between these spectroscopic diagnoses and the spot / faculae configuration + impact on transmission spectroscopy

Stellar activity is a limitation for all of us (RVs, PLATO, ARIEL), we should join our efforts …
Stellar activity campaign

La campagne d'activité K2: données obtenues sur la M100

Time [BJD - 2 458 000]

Radial velocity [m.s⁻¹]

Relative flux

K2 TRAPPIST-N (z') TRAPPIST-N (V)

Analyse préliminaire de la spectropolarimétrie. Crédit: Jean-François Donati

Lopez et al. (in prep.)
Take-home messages

• **RVs** are an important input for the *ARIEL* mission (exoplanet mass, eccentricity, ephemerides)

• We can perform **RV preparatory observations** on *ARIEL* secured targets, at least before *PLATO*’s launch

• Need to perform **spectroscopic observations contemporaneous** with the *ARIEL* observations, at least for the most active stars.

• We need to work together to **model stellar activity** based on spectroscopic diagnoses and correct for it.