

Juan Carlos Morales (IEEC – ICE, CSIC) Aymeric Walker-Deemin (CNES) Nariman Nakhjiri (IEEC – ICE, CSIC) Jean Jaubert (CNES) Pep Colomé (IEEC – ICE, CSIC) Andrea Moneti (IAP) Ignasi Ribas (IEEC – ICE, CSIC) Jean-Philippe Beaulieu (IAP)

Goal

- Prepare a tool to automatically plan ARIEL observations and operations
- Study the feasibility of the ARIEL science goals within the mission lifetime ٠ \rightarrow Survey 1000 exoplanets
- But also, analysis of the targets sample, mission parameters trade-off analysis.

Input

- List of targets and requirements
- Payload operations: calibrations, house keeping...
- Mission constraints: orbit, field of regard...

Output

- Timeline of the mission including: calibrations, station keeping...
- Monthly update recalculation during operations: feedback, new targets...

Input target list (Edwards, 2019, AJ 157, 242)

Includes coordinates, ephemerides, number of observations, priorities...

Three Tiers approach : 1000 planets

- <u>Tier 1 Survey planets</u>: 400 (*397 without ph-curves*) 1-5 obs/target (~ 1.2 obs/target) Event duration ~ 9 h
- <u>Tier 2 Deep planets</u>: 550 (*526 without ph-curves*) 1-19 obs/target (~ 4.1 obs/target) Event duration ~ 8.5 h
- <u>Tier 3 Benchmark planets</u>: 50 (40 without ph-curves)
 <u>1-2 obs/target</u> (~ 1.8 obs/target) but re-visits desired Event duration ~ 6 h
- <u>Back-up targets</u>: 1093
 1-5 obs/target (~ 3.3 obs/targets)

Observations

Time constrained:

- Transits
- Occultations (eclipses)

Total duration: 2.5 x T_{14}

3

- Phase curves (~ 5 10% mission lifetime)
 - ightarrow Also time constrained from occultation to occultation

ARIEL Open Conference

Star + Planet Nightside

ESTEC, 14-16 January 2020

Transit

lanet Shadow

Mission constraints

Observational constraints:

- L2 orbit
- 3.5 years operations (mid-2028 to 2031)
- Field of regard: 20-30 deg
- Telescope slew time: 4.5 deg/min + 5 min
- Observable target events

predictable

Operation tasks:

- Calibration observations: observe stable G stars
 - \rightarrow Short calibrations: 1h every 36 ± 12 hours
 - \rightarrow Long calibrations: 6h every 15 ± 5 days
- House keeping operations: 4 hours every 28 ± 3 days
- No overlap with observations
- Downlinks (not affecting scheduler)

~ flexible constraints

Mission planning during ARIEL operations

Scheduling algorithm: Evolutionary Multi-objective Optimization (IEEC, Barcelona)

Genetic algorithms

- Parameter space exploration and optimization
 - → Start from random plans fulfilling constraints
 - ightarrow Produce a population solutions by crossover and mutation
 - → Select best plans according to optimization criteria

Pros:

- Constraints easily adapted: visibility, number of visits per target, calibration sequences, slew rate, overlapping tasks...
- Several simultaneous optimization criteria
 - \rightarrow Maximize the total time on targets (i.e. minimize slew)
 - ightarrow Maximize the number of completed sequences
- Exploration of the full parameter space to avoid local minima Cons:
- Computationally expensive... but only ~20 minutes
 ... and working to improve (adding new targets < 1 sec)

Juan Carlos Morales Nariman Nahkjiri Pep Colomé Ignasi Ribas

Time

ESTEC, 14-16 January 2020

Scheduling algorithm: Evolutionary Multi-objective Optimization (IEEC, Barcelona)

Tool already in operation

Garcia-Piquer et al. (2017)

Scheduling algorithm: Evolutionary Multi-objective Optimization (IEEC, Barcelona)

cherenkov telescope arr

ARIEL Open Conference

ESTEC, 14-16 January 2020

Scheduling algorithm: Evolutionary Multi-objective Optimization (IEEC, Barcelona)

Scheduling process:

Mission Reference Sample, 1000 targets (+1093 back-up): T1 – 400 (+1093), T2 – 550, T3 – 50

Target	Preferred Observation	Tier 1 Obs	Tier 2 Obse	Tier 3 Obs	Туре	Tier	
ARIEL-2	Eclipse	1	1	1	K-H-J	3	
ARIEL-3	Eclipse	1	1	1	G-VH-J	3	
ARIEL-4	Transit	1	1	2	M-W-SN	3	
ARIEL-5	Transit	1	1	1	K-H-J	3	
ARIEL-6	Eclipse	1	1	1	G-VH-MJ	3	
ARIEL-7	Eclipse	1	1	2	K-VH-J	3	
ARIEL-7	Transit	1	1	1	F-VH-J	3	
ARIEL-8	Eclipse	1	1	1	G-UH-MJ	3	
ARIEL-9	Eclipse	1	1	1	F-VH-MJ	3	
ARIEL-10	Eclipse	1	1	1	G-VH-J	3	
Observations for each TIER block						Requested TIER	
<u>Schedule</u>	e sequence:						
1. Schedule targets to complete highest TIER block						1	
2. Rem	ove uncompleted TIE	e uncompleted TIER blocks					
3. Fill g	aps with targets that						
4. Evaluate gaps between transit observations						Case 1-fill	
5. Fill g]						

Scheduling algorithm: Evolutionary Multi-objective Optimization (IEEC, Barcelona)

Scheduling results:

 \rightarrow Mission Reference Sample (MRS), 1000 targets: T1 – 400, T2 – 550, T3 – 50

Test case	Completed targets		Waiting time			
iest tase	Completed targets	On targets	Slewing	Cal. + S. Keep		
Case 1	989 68.7 %		3.7 %	4.1%	23.5 %	

Case 1 (MRS) 3132 events (~ 21100 hours) Slewing: ~ 1200 h Calibrations: ~ 1200 h Station Keeping: 180 h Waiting time: ~ 7000 h

Scheduling algorithm: Evolutionary Multi-objective Optimization (IEEC, Barcelona)

Scheduling results:

- \rightarrow Mission Reference Sample (MRS), 1000 targets: T1 400, T2 550, T3 50
- → MRS + re-visits + back-up targets: 1000 (+1093): T1 400 (+1093), T2 550, T3 50

Test case	Completed targets		Waiting time			
lest case	Completed targets	On targets	Slewing Cal. + S. Keep		waiting time	
Case 1	989	68.7 %	3.7 %	4.1%	23.5 %	
Case 1-fill	1194	77.5 %	4.7 %	4.1%	13.7 %	

Slewing: ~ 1400 h Calibrations: ~ 1200 h Station Keeping: 180 h Waiting time: ~ 4100 h

Scheduling algorithm: Evolutionary Multi-objective Optimization (IEEC, Barcelona)

Scheduling results:

- \rightarrow Mission Reference Sample (MRS), 1000 targets: T1 400, T2 550, T3 50
- → MRS + re-visits + back-up targets: 1000 (+1093): T1 400 (+1093), T2 550, T3 50
- \rightarrow Phase curves

Tast saca	Completed terrets		Moiting time			
Test case	Completed targets	On targets Slewing		Cal. + S. Keep	Waiting time	
Case 1	989	68.7 %	3.7 %	4.1%	23.5 %	
Case 1-fill	1194	77.5 %	4.7 %	4.1%	13.7 %	
Case 1-fill + phase curves	1181	77.6 %	4.7 %	4.1%	13.7 %	
	Case 1 (MRS)	3132 (~ 2110	argets events 00 hours)	Calibra Station	wing: ~ 1400 h ibrations: ~ 1200 h tion Keeping: 180 h iting time: ~ 4100 h	
Case 1-fill (MRS + revis			events 0 hours)	Flux Occultation	on Star + Planet Dayside	
۲ ۲ ARIEL Open Conference	L5 phase curves	(events) hours	Time	Star + Planet Nightside Transit Star - Planet Shadow 2, 14-16 January 2020	

Scheduling algorithm: Evolutionary Multi-objective Optimization (IEEC, Barcelona)

Scheduling results:

- \rightarrow Mission Reference Sample (MRS), 1000 targets: T1 400, T2 550, T3 50
- → MRS + re-visits + back-up targets: 1000 (+1093): T1 400 (+1093), T2 550, T3 50
- \rightarrow Phase curves

Test case	Completed targets		Waiting time			
	completed targets	On targets	Slewing	Cal. + S. Keep	watting time	
Case 1	989	68.7 %	3.7 %	4.1%	23.5 %	
Case 1-fill	1194	77.5 %	4.7 %	4.1%	13.7 %	
Case 1-fill + phase curves	1181	77.6 %	4.7 %	4.1%	13.7 %	

Phase curves

- Do not significantly change time efficiency
- Small effect on completed targets

Distribution of targets

- Follows Mission Reference Sample
 - ightarrow Can be changed using priorities for each target

Waiting time

• Inherent to the scheduling of time constrained events (details in coming slides)

ARIEL Open Conference

ESTEC, 14-16 January 2020

CNES Mission planning & Scheduling Approach

Aymeric Walker-Deemin	
Jean Jaubert	

Andrea **Moneti** Jean-Philippe **Beaulieu** (IAP) (IAP)

(CNES)

(CNES)

CNES Mission planning & Scheduling Approach : Method

- Core Process : "Hierarchical Greedy" scheduling
 - well-known problem-solving heuristic, making locally optimal choice at each stage (sequential process), with the intent of finding approximations of global optimum.
 - Requires an initial "ranking" of all candidate observations according to **mission** and **scheduling optimization** criteria
 - Uses a practical heuristic to decide where to insert a new element in the schedule
- Additional logics : tuneable complementary "rules", to meet specific user needs, which are likely to evolve throughout mission lifetime.

AP

· cnes · ·

AP

CNES Mission planning & Scheduling Approach : Functional Algorithm (simplified)

Preliminary stage : Computation of all Transit / Eclipse opportunities for each target over 3.5 years (combination of periodic Tr/Ecl obs. slots with accessibility time windows of target from ARIEL position)

Main algorithm : (Greedy hierarchical principle)

Scheduling of Phase Curve sequences

For all targets with objective (tier) = Bench, then Deep, then Survey

Ranking of targets according to: User Priority, then Flexibility (Easy2Hard or Hard2Easy)

For every target of the ranked list, scheduling (attempt) of the sequence's 1st visit :

Insertion of all required observations to complete the sequence objective, while considering :

- Slew from/to other targets already scheduled
- G-star calibration before/after each observation if required
- For tier Deep only, postponing of observations above sublevel Survey after 12-18 months

If insertion of all observations of the sequence is possible : sequence → « SUCCESSFUL »

Otherwise (if at least 1 of the observations could not be inserted) : sequence → « NOT SUCCESSFUL »

- If primary tier = Survey: Removing all observations inserted in the schedule
- If primary tier = Deep or Bench and a sub-tier is reached, the target tier is downgraded to the closest sublevel (Survey or Deep): sequence → DOWNGRADED

Scheduling of routine calibrations & house-keeping activities

Scheduling of additional visits (similar process as for sequence's 1st visit)

CNES Mission planning & Scheduling Approach : Key Characteristics

- Tiers' intrinsic priorities are manageable (e.g. to favour the scheduling of all benchmark sequences of the catalogue)
- User priorities are taken into account at top level
- Possibility to favour the scheduling of "easy" or "hard" sequences (related to: flexibility factor, number & duration of observations...)

 $F = 1 - \frac{Nb \ of \ obs.required}{Nb \ of \ opportunities}$

- Maximum percentage of Phase-curves desired is tuneable.
- Influencing the number of survey done within the first year is possible (cf. related mission "goal").
- The algorithm is designed to schedule all observations of a given sequence as closely as possible from each other, for both "user" and also "risk mitigation" interest.

$$\rho = \begin{cases} \frac{t_{obs}^{last} - t_{obs}^{first}}{T.(N-1)} , & If \ N \geq 2\\ 0, & Else \end{cases}$$

with : N = sequence's number of observations, T = Planet's Transit/Eclipse period

AP

AP

CNES Mission planning & Scheduling Approach : Schedule - Overview

CNES Mission planning & Scheduling Approach : Results

Scheduled targets :

- **Phase-curves** : 29 targets scheduled, so as to occupy ~8% of mission-time (mission allocation)
- Tiers 3 (**Benchmark**) and 2 (**Deep**) : **100%** of catalogue's **sequences are scheduled** (40 and 526 targets respectively)
- Tier 1 (Survey) : 90% of catalogue's sequences are scheduled (358 targets)

Mission Goals :

- Number of targets with primary or sub-tier Survey scheduled within the 1st year : 637 (goal = 500)
- All benchmark targets are scheduled within the 1st semester (goal = "within the 1-st year")

Time occupation optimization:

Due to the nature of ARIEL scheduling problem (*constrained transit/eclipse dates*), the presence of **inaction slots** in the mission-timeline is unavoidable \rightarrow But **a significant number could be used cleverly** :

- Inaction slots < 1 hr : can be used to extend observations, allowing for more settling time and improved signal baseline determination
- **1** hr < Inaction slots < **2** hr : can be used for ancillary science.
- Inaction slots > 2 hr: can accommodate revisits of already fully scheduled targets, which can be
 of interest for "variability" analysis

ARIEL Open Conference

AP

CNES Mission planning & Scheduling Approach : Inaction Slots Analysis

ARIEL Open Conference

AR COES

CNES Mission planning & Scheduling Approach : Results (cont'd)

			• • • •			•	-			
			Basel	ine *	Wi Extra Re					
	Number of targets o	bserved		953	96.0 %		96.0 %	Time occupation		
Best tuning for :	Number of observat	ions schedu	led	2941		3290		for Science :		
Time-occupation								<u> </u>		
Bench & Deep completion	Total shutter time on target [hr]			22 826	74.3 %	23 570	76.7 %	80.6 %		
	Total shutter time o	n calibration	stars [hr]	1 212	3.9 %	1 212	3.9 %			
	Total slew/settling t	ime [hr]		1 314	4.3 %	1 462	4.8 %	- 87 %		
	Scheduled HK activit	ties		184	0.6 %	184	0.6 %			
	Inaction slots < 2 hr	Inaction slots < 2 hr Inaction slots > 2 hr			4.9 %	1 958	6.4 %			
	Inaction slots > 2 hr				12 %	2 334	7.6 %			
	Total			30 720	100 %	30 720 100 %				
		* Baseline : only observations requested by MRS list are scheduled ** With Extra Revisits : Baseline + extra visits of same MRS targets Similar results to those of								
	** With Extr	a Revisits : Bas	seline + extra v	visits of san	ne MRS tai	rgets	Similar re	sults to those of		
Planet T	ypes : All types of plan	ets are sch	eduled	the IEEC-ICE-CSIC				C-ICE-CSIC team		
	\rightarrow Representation			ogue's d	istributi	on				
							T			
		Ultra Hot	Very Hot	Но	τ	Warm	Tempera	ate		
	Massive Jupiter	7 / 8	105 / 115	9 / 2	10	х	Х			
	Jupiter	35 / 43	275 / 300	223 /	234	77 / 79	4/7			
	Neptune	4 / 4	13 / 14	18 /		24 / 26	4 / 4			
	Sub-Neptune	1 /1	4/8	12 /	14	37 / 39	27 / 27	7		
	Earth & Super-Earth	х	2 / 2	6 /	6	17 / 18	20 / 20	0		

ARIEL Open Conference

AP

General conclusion of ARIEL mission-planning workgroup activities

- Two different approaches and tools presented with different methods and specific features :
 - → 2 different representative mission schedules obtained over the 3.5 years lifetime from current Mission Reference Sample
 - \rightarrow Similar performance w.r.t. mission requirements and objectives
 - → Good confidence in results produced thanks to this cross-validation
- Most MRS targets can be visited
 - \rightarrow Distribution of planet types well represented
- Between 85%-90% of the mission-time can be devoted to science (including extra revisits and/or backup targets, and ancillary science), knowing that inaction slots are inherent to ARIEL context.
 - \rightarrow ~ 24000 h on targets (~ 3500 transit/eclipse events)
- **Fast runtime** of scheduling process allows for multiple updates of the mission schedule
- Future work :
 - ✓ Take into account :
 - updated MRS
 - very likely new mission and system (spacecraft, ground) constraints and needs
 - ✓ Refine the scheduling process

Thank you!