ARIEL Scheduling

```
Juan Carlos Morales (IEEC - ICE, CSIC)
    Aymeric Walker-Deemin (CNES)
    Nariman Nakhjiri (IEEC - ICE, CSIC)
        Jean Jaubert (CNES)
    Pep Colomé (IEEC - ICE, CSIC)
            Andrea Moneti (IAP)
Ignasi Ribas (IEEC - ICE, CSIC)
Jean-Philippe Beaulieu (IAP)
```

1

ARIEL Scheduling

Goal

- Prepare a tool to automatically plan ARIEL observations and operations
- Study the feasibility of the ARIEL science goals within the mission lifetime \rightarrow Survey 1000 exoplanets
- But also, analysis of the targets sample, mission parameters trade-off analysis.

Input

- List of targets and requirements
- Payload operations: calibrations, house keeping...
- Mission constraints: orbit, field of regard...

Output

- Timeline of the mission including: target observations, slew, calibrations, station keeping...

Time

ARIEL Scheduling

Input target list (Edwards, 2019, AJ 157, 242)
Includes coordinates, ephemerides, number of observations, priorities...
Three Tiers approach : $\mathbf{1 0 0 0}$ planets

- Tier 1 - Survey planets: 400 (397 without ph-curves)

1-5 obs/target (~ 1.2 obs/target)
Event duration ~ 9 h

- Tier 2 - Deep planets: 550 (526 without ph-curves)

1-19 obs/target (~ 4.1 obs/target)

Event duration ~ 8.5 h

- Tier 3 - Benchmark planets: 50 (40 without ph-curves)

1-2 obs/target (~ 1.8 obs/target) but re-visits desired Event duration ~ 6 h

- Back-up targets: 1093

1-5 obs/target (~ 3.3 obs/targets)

Observations

Time constrained:

- Transits
- Occultations (eclipses)
- Phase curves ($\sim 5-10 \%$ mission lifetime)
\rightarrow Also time constrained from occultation to occultation

ARIEL Scheduling

Mission constraints

Observational constraints:

- L2 orbit
- 3.5 years operations (mid-2028 to 2031)
- Field of regard: 20-30 deg
- Telescope slew time: $4.5 \mathrm{deg} / \mathrm{min}+5 \mathrm{~min}$
- Observable target events

Operation tasks:

- Calibration observations: observe stable G stars
\rightarrow Short calibrations: 1 h every 36 ± 12 hours
\rightarrow Long calibrations: 6 h every 15 ± 5 days
- House keeping operations: 4 hours every 28 ± 3 days
- No overlap with observations
- Downlinks (not affecting scheduler)

~ flexible constraints

Scheduling algorithm: Evolutionary Multi-objective Optimization (IEEC, Barcelona)

Genetic algorithms

- Parameter space exploration and optimization
\rightarrow Start from random plans fulfilling constraints
\rightarrow Produce a population solutions by crossover and mutation
\rightarrow Select best plans according to optimization criteria

Pros:

- Constraints easily adapted: visibility, number of visits per target, calibration sequences, slew rate, overlapping tasks...
- Several simultaneous optimization criteria
\rightarrow Maximize the total time on targets (i.e. minimize slew)
\rightarrow Maximize the number of completed sequences
- Exploration of the full parameter space to avoid local minima

Cons:

- Computationally expensive... but only ~20 minutes

Region with all the combinations

- Region with feasible solutions (search space)
- Efficient solution

ARIEL Scheduling

Scheduling algorithm: Evolutionary Multi-objective Optimization (IEEC, Barcelona)

ARIEL Scheduling

Scheduling algorithm: Evolutionary Multi-objective Optimization (IEEC, Barcelona)

Tool already in operation

Garcia-Piquer et al. (2017)

Scheduling Analysis Tool

ARIEL Scheduling
Scheduling algorithm: Evolutionary Multi-objective Optimization (IEEC, Barcelona)

Scheduling process:

Mission Reference Sample, 1000 targets (+1093 back-up): T1-400 (+1093), T2 - 550, T3-50

Target	Preferred Observation	Tier 1 Obsı Tier 2 Obs \in Tier 3 Obs			Type	Tier
ARIEL-2	Eclipse	1	1	1	K-H-J	3
ARIEL-3	Eclipse	1	1	1	G-VH-J	3
ARIEL-4	Transit	1	1	2	M-W-SN	3
ARIEL-5	Transit	1	1	1	K-H-J	3
ARIEL-6	Eclipse	1	1	1	G-VH-MJ	3
ARIEL-7	Eclipse	1	1	2	K-VH-J	3
ARIEL-7	Transit	1	1	1	F-VH-J	3
ARIEL-8	Eclipse	1	1	1	G-UH-MJ	3
ARIEL-9	Eclipse	1	1	1	F-VH-MJ	3
ARIEL-10	Eclipse	1	1	1	G-VH-J	3
		Obser	for ck			Requested TIER

Schedule sequence:

1. Schedule targets to complete highest TIER block
2. Remove uncompleted TIER blocks

Case 1
3. Fill gaps with targets that can be completed
4. Evaluate gaps between transit observations
5. Fill gaps re-visiting targets or with back-up targets

ARIEL Scheduling
Scheduling algorithm: Evolutionary Multi-objective Optimization (IEEC, Barcelona)
Scheduling results:
\rightarrow Mission Reference Sample (MRS), 1000 targets: T1 - 400, T2 - 550, T3-50

		Working time			
Test case	Completed targets	Waiting time			
Case 1	On targets	Slewing	Cal. + S. Keep		
	989	68.7%	3.7%	4.1%	23.5%

Case 1 (MRS) \quad\begin{tabular}{l}
On targets

3132 events

$(\sim 21100$ hours $)$

\quad

Slewing: $\sim 1200 \mathrm{~h}$
Calibrations: $\sim 1200 \mathrm{~h}$
Station Keeping: 180 h
Waiting time: $\sim 7000 \mathrm{~h}$

\hline
\end{tabular}

ARIEL Scheduling
Scheduling algorithm: Evolutionary Multi-objective Optimization (IEEC, Barcelona)
Scheduling results:
\rightarrow Mission Reference Sample (MRS), 1000 targets: T1-400, T2 - 550, T3-50
\rightarrow MRS + re-visits + back-up targets: 1000 (+1093): T1 - 400 (+1093), T2 - 550, T3 - 50

		Working time			
Test case	Completed targets	Waiting time			
Case 1	On targets	Slewing	Cal. + S. Keep		
Case 1-fill	989	68.7%	3.7%	4.1%	23.5%

Slewing: ~ 1400 h
Calibrations: ~ 1200 h
Station Keeping: 180 h
Waiting time: ~ 4100 h

ARIEL Scheduling

Scheduling algorithm: Evolutionary Multi-objective Optimization (IEEC, Barcelona)

Scheduling results:

\rightarrow Mission Reference Sample (MRS), 1000 targets: T1-400, T2 - 550, T3-50
\rightarrow MRS + re-visits + back-up targets: 1000 (+1093): T1 - 400 (+1093), T2 - 550, T3 - 50
\rightarrow Phase curves

Test case	Completed targets	Working time			Waiting time
		On targets	Slewing	Cal. + S. Keep	
Case 1	989	68.7\%	3.7 \%	4.1\%	23.5 \%
Case 1-fill	1194	77.5 \%	4.7 \%	4.1\%	13.7 \%
Case 1-fill + phase curves	1181	77.6 \%	4.7 \%	4.1\%	13.7 \%
Case 1-fill (MRS + rev	Case 1 (MRS)		ts ours)	Slewing: ~ 1400 h Calibrations: ~ 1200 h Station Keeping: 180 h Waiting time: ~ 4100 h	
	Re-visits + its + back-up) 5 phase curve	up target	nts urs) ts urs		

ARIEL Scheduling
Scheduling algorithm: Evolutionary Multi-objective Optimization (IEEC, Barcelona)

Scheduling results:

\rightarrow Mission Reference Sample (MRS), 1000 targets: T1-400, T2 - 550, T3-50
\rightarrow MRS + re-visits + back-up targets: 1000 (+1093): T1 - 400 (+1093), T2 - 550, T3 - 50
\rightarrow Phase curves

Test case	Completed targets	Working time			Waiting time
		On targets	Slewing	Cal. + S. Keep	
Case 1	989	68.7 \%	3.7 \%	4.1\%	23.5 \%
Case 1-fill	1194	77.5 \%	4.7 \%	4.1\%	13.7 \%
Case 1-fill + phase curves	1181	77.6 \%	4.7 \%	4.1\%	13.7 \%

Phase curves

- Do not significantly change time efficiency
- Small effect on completed targets

Distribution of targets

- Follows Mission Reference Sample
\rightarrow Can be changed using priorities for each target
Waiting time
- Inherent to the scheduling of time constrained events (details in coming slides)

CNES Mission planning \& Scheduling Approach

Aymeric Walker-Deemin	(CNES)
Jean Jaubert	(CNES)

Jean Jaubert

Andrea Moneti
Jean-Philippe Beaulieu
教
(CNES)

(IAP)

(IAP)

CNES Mission planning \& Scheduling Approach : Method

- Core Process : "Hierarchical Greedy" scheduling
- well-known problem-solving heuristic, making locally optimal choice at each stage (sequential process), with the intent of finding approximations of global optimum.
- Requires an initial "ranking" of all candidate observations according to mission and scheduling optimization criteria
- Uses a practical heuristic to decide where to insert a new element in the schedule
- Additional logics : tuneable complementary "rules", to meet specific user needs, which are likely to evolve throughout mission lifetime.

Preliminary stage : Computation of all Transit / Eclipse opportunities for each target over 3.5 years | (combination of periodic Tr/Ecl obs. slots with accessibility time windows of target from ARIEL position) |
| :---: |

\square
Main algorithm :
(Greedy hierarchical principle)

Scheduling of Phase Curve sequences

For all targets with objective (tier) = Bench, then Deep, then Survey
Ranking of targets according to: User Priority, then Flexibility (Easy2Hard or Hard2Easy)
For every target of the ranked list, scheduling (attempt) of the sequence's $1^{\text {st }}$ visit :
Insertion of all required observations to complete the sequence objective, while considering :

- Slew from/to other targets already scheduled
- G-star calibration before/after each observation if required
- For tier Deep only, postponing of observations above sublevel Survey after 12-18 months

If insertion of all observations of the sequence is possible : sequence \rightarrow « SUCCESSFUL »
Otherwise (if at least 1 of the observations could not be inserted) : sequence \rightarrow «NOT SUCCESSFUL »

- If primary tier = Survey: Removing all observations inserted in the schedule
- If primary tier = Deep or Bench and a sub-tier is reached, the target tier is downgraded to the closest sublevel (Survey or Deep): sequence \rightarrow DOWNGRADED

Scheduling of routine calibrations \& house-keeping activities
Scheduling of additional visits (similar process as for sequence's 1st visit)

CNES Mission planning \& Scheduling Approach : Key Characteristics

Many settings, options and parameters are made available for users to adapt the mission schedule to user preferences and to various catalogs of requests with different features :

- Tiers' intrinsic priorities are manageable (e.g. to favour the scheduling of all benchmark sequences of the catalogue)
- User priorities are taken into account at top level
- Possibility to favour the scheduling of "easy" or "hard" sequences (related to: flexibility factor, number \& duration of observations...)

$$
F=1-\frac{N b \text { of obs.required }}{N b \text { of opportunities }}
$$

- Maximum percentage of Phase-curves desired is tuneable.
- Influencing the number of survey done within the first year is possible (cf. related mission "goal").
- The algorithm is designed to schedule all observations of a given sequence as closely as possible from each other, for both "user" and also "risk mitigation" interest.

$$
\rho=\left\{\begin{array}{c}
\frac{t_{o b s}^{\text {last }}-t_{\text {obs }}^{\text {first }}}{T .(N-1)}, \quad \text { If } N \geq 2 \\
0, \quad \text { Else }
\end{array}\right.
$$

with : $N=$ sequence's number of observations, $T=$ Planet's Transit/Eclipse period

洞 c
CNES Mission planning \& Scheduling Approach : Schedule - Zoom

Phase-curve obs.

Transit/occult observation :

	Benchmark
Deep	
Survey	

CNES Mission planning \& Scheduling Approach : Schedule - Overview
Aug - 29
Aug - 29
Sep - 29
Oct - 29
Nov - 29
Dec - 29
Jan-30
Feb-30
Mar - 30
Apr-30
May - 30
Jun - 30
Jul - 30
Aug - 30
Sep-30
Oct - 30
Nov 30
Nov - 30
Dec - 30
Jan-31
Feb-31
Mar-31
Mar-31
Apr-31
May-31
Jun-31
Jul-31
Aug-31
Aug - 31
Sep -31
Oct-31
Nov-31
Dec-31
Jan-32
Feb- 32
Mar - 32
Apr-32
May- 32
Jun - 32
Jul-32
Aug - 32
Sep-32
Oct-32
Nov-32
Dec - 32
MI

ARIEL Open Conference

CNES Mission planning \& Scheduling Approach : Results

Scheduled targets:

- Phase-curves : 29 targets scheduled, so as to occupy ~8\% of mission-time (mission allocation)
- Tiers 3 (Benchmark) and 2 (Deep) : 100\% of catalogue's sequences are scheduled (40 and 526 targets respectively)
- Tier 1 (Survey) : 90\% of catalogue's sequences are scheduled (358 targets)

Mission Goals :

- Number of targets with primary or sub-tier Survey scheduled within the $1^{\text {st }}$ year : 637 (goal $=500$)
- All benchmark targets are scheduled within the $1^{\text {st }}$ semester (goal = "within the 1 -st year")

Time occupation optimization:

Due to the nature of ARIEL scheduling problem (constrained transit/eclipse dates), the presence of inaction slots in the mission-timeline is unavoidable \rightarrow But a significant number could be used cleverly :

- Inaction slots <1 hr : can be used to extend observations, allowing for more settling time and improved signal baseline determination
- $\mathbf{1 ~ h r}<$ Inaction slots < $\mathbf{2} \mathbf{~ h r}$: can be used for ancillary science.
- Inaction slots > $\mathbf{2} \mathbf{h r}$: can accommodate revisits of already fully scheduled targets, which can be of interest for "variability" analysis

CNES Mission planning \& Scheduling Approach : Inaction Slots Analysis

Inaction slots Distribution

Inaction slots: \% of Mission Duration

Inaction slots Distribution : Zoom ($=\mathbf{9 9} \%$ percentile)

Inaction slots : \% of Cumulative Mission Duration

ESTEC, 14-16 January 2020

CNES Mission planning \& Scheduling Approach : Results (cont'd)

Best tuning for:
$>$ Time-occupation
$>$ Bench \& Deep completion

Planet Types : All types of planets are scheduled

Similar results to those of the IEEC-ICE-CSIC team
\rightarrow Representative of the MRS catalogue's distribution

	Ultra Hot	Very Hot	Hot	Warm	Temperate
Massive Jupiter	7 / 8	105 / 115	9 / 10	x	x
Jupiter	$35 / 43$	275 / 300	223/234	77 / 79	4 / 7
Neptune	4 / 4	13/14	18/21	24/26	4/4
Sub-Neptune	$1 / 1$	4/8	12 / 14	$37 / 39$	27/27
Earth \& Super-Earth	x	2/2	6 / 6	17 / 18	20/20

ARIEL Open Conference

* A / B = Schedulèd / Catalogue

ESTEC, 14-16 January 2020

General conclusion of ARIEL mission-planning workgroup activities

- Two different approaches and tools presented with different methods and specific features:
$\rightarrow 2$ different representative mission schedules obtained over the 3.5 years lifetime from current Mission Reference Sample
\rightarrow Similar performance w.r.t. mission requirements and objectives
\rightarrow Good confidence in results produced thanks to this cross-validation
- Most MRS targets can be visited
\rightarrow Distribution of planet types well represented
- Between $85 \%-90 \%$ of the mission-time can be devoted to science (including extra revisits and/or backup targets, and ancillary science), knowing that inaction slots are inherent to ARIEL context.
\rightarrow ~ 24000 h on targets (~ 3500 transit/eclipse events)
- Fast runtime of scheduling process allows for multiple updates of the mission schedule
- Future work :
\checkmark Take into account:
- updated MRS
- very likely new mission and system (spacecraft, ground) constraints and needs
$\checkmark \quad$ Refine the scheduling process

Thank you!

