Orbital migration, pebble vs planetesimal accretion -- Implication for ARIEL--

Shigeru Ida (ELSI, Tokyo Tech)

- Current status of planet formation theory
 - > Type II migration -- jupiters
 - Type I migration super-Earths
 - Pebble accretion
- Implication for ARIEL observation

ARIEL conference, Jan 15, 2020, ESTEC, Netherland

Planet Population Synthesis Simulations

Ida & Lin (2004a,b,05,08a,b,10), Ida+(2013), Mordasini+(2009a,b,12), Alibert+(2011,13)

Observed *e-M* **correlation** : reproduced by planet-planet scattering

Observed *M-a* **distribution : many difficulties**

Planets discovered by RV surveys to avoid bias in *a* of transit surveys

M-a distribution of jupiters

M > M_J piled up at > 0.5 au inconsistent with classical type-II mig model

• $0.1 M_J < M < M_J$ log uniform in a

Type-II migration problem

M > *M*₁ : type-II migration: halted?

How to halt type II migration for sub-jupiters?

- Only low viscous α -- does not work
 planetary growth by full disk gas accretion even after gap formation Mordasini et al. 2009a, 2009b, Alibert et al. 2011, 2013
 - \rightarrow too much growth?

→ assume good external photoevaporation

3. disk inner cavity by internal photoevaporation Alexander & Pascucci (2012), Ercolano & Rosotti (2015), Jennings+(2018) \rightarrow how to explain different *a* distributions between $M > M_J$ and $M < M_J$?

New type II mig model explains *M-a* distribution of jupiters?

- disk gas passes the gap ← hydro simulations
 Duffell+(2014), Dürmann & Kley (2015), Kanagawa+(2018)
- type II mig = type I mig with reduced Σ_{gas} in the gap Kanagawa+(2018), Robert+(2018)
- slow type II migration *if turbulent* α_{turb} << disk accretion α_{acc}
 i ower α_{turb} → lower Σ_{gas} → slower migration
 *t*_{mig}/t_{dep} ~ (M/M_J) for disk wind (with α_{turb} ~ 0.1α_{acc})
 Ida+(2018)

Explain the distr. of jupiters?

ARIEL: constrain type II migration -- C/O of jupiters

C/O constrains type II migration history? Oberg+(2011), Madhusudhan+(2014)

- > assuming carbon: half -- volatile forms (CO_2 , CO, CH_4 ..)
 - + half -- interstellar refractory carbon (graphite, nano-diamond, large organics ...)

Carbon deficit problem

M-a distribution of super-Earths

M-a distribution of super-Earths

Why super-Earths did not accrete gas to be jupiters?

- $M > M_{crit,core} \sim 10 M_{\oplus}$ & small *a* → runway gas accretion?
 - Why they did not do that?
 ▶ gap opening? -- not stop gas accretion
 Duffell+(2014), Dürmann & Kley (2015), Kanagawa+(2018)
 ▶ migration of embryos with < a few M_⊕
 + giant impacts after disk gas accretion
 Ida & Lin (2010)
 - atmosphere recycling Ormel+ (2015)

Not clear

Why type I migration of super-Earths were halted?

- How to halt type I migrations of super-Earths in intermediate disk regions?
 How to retain cores of jupiters at > 0.5 au?
 - type I migration: many ideas
 - \checkmark Non-isothermal
 - $\checkmark\,$ dynamical corotation torque
 - \checkmark inner disk depletion by disk wind
 - \checkmark pressure bumps

Not clear

oy disk wind

ARIEL: diverse atmosphere of super-Earths?

- Formation of close-in super-Earths: still confused \succ need constraints from super-Earth atmosphere observation (what data?)
 - Diverse atmosphere of super-Earths due to refractory carbon destruction?
 - \succ Not clear how common is the destruction
- Orders of magnitude variety in carbon abundance may exist among super-Earths
 → diverse surface environment?
 -- Our on-going project
 interesting aspect for atmosphere observation? abundance may exist among super-Earths

Pebble accretion

Pebble accretion

Pebble accretion solve the difficulties? NO■ How to retain cores of jupiters at > 0.5 au?

- Rapid enough accretion of cores
 - ✓ Large (R > 100km) "seed embryos" are needed
 - How, Where, When to make them?
 - $\checkmark\,$ Pebble isolation stops the rapid growth
- Pebble isolation: accretion stops by a partial gap
 - \succ *M*_{iso} <~ 10 *M*_⊕ for relatively low *α*_{turb} → hard to make jupiters
 - > jupiter formation prevents formation of close-in super-Earths
 - inconsistent with observed suggestion?
 Zhu & Wu (2018), Bryan+ (2019)

ARIEL: constrain planetesimals vs. pebbles

Magma ocean and resultant atmosphere must be very different

- > Planetesimal accretion: hit planet surface, giant impacts
- \succ Pebble accretion: ablated in atmosphere \rightarrow metal-rich hot atmosphere

Summary

type II migration

- > New model to explain the distribution of jupiters if $\alpha_{turb} << \alpha_{acc}$.
- To retrieve migration history from atmospheric observation, carbon deficit problem must be solved.

type I migration

- \succ diverse discussions, not settled down \rightarrow need observational constraints
- ➢ orders of magnitude variety of C → diverse surface environment?
 → tested by atmospheric observation

pebble isolation

- b difficulties: formation of seed embryos? pebble isolation mass?
- \succ planetesimal vs. pebble accretion \leftarrow constrained by atmospheric observation