# EXPLORING DISEQUILIBRIUM CHEMISTRY IN THE ATMOSPHERES OF HOT JUPITERS

### Yui Kawashima (SRON)

Collaborator: Michiel Min (SRON)

### QUENCHING EFFECT

Each species has constant abundance above a certain altitude, where  $\tau \text{ diff} = \tau \text{ chem}$ , due to efficient eddy diffusion mixing



### CHEMISTRY IN RETRIEVAL MODELS



chemical equilibrium abundances

Introduced a Assume constant or quenching pressure, but assumed the same altitudes for all species

Calculate quenching pressure for each species as a function of K77

### CHEMICAL RELAXATION METHOD

Chemical timescale:

Slowest reaction along the fastest pathway; depends on both temperature and pressure

Tsai et al. (2017)
 Derived chemical timescales;
 valid for currently observable
 exoplanet atmospheres
 (500-3000 K, 0.1 mbar-1000 bar)



 $[CH_4]$ 

 $\tau_{\rm CH_4} = \frac{1}{k_1[\rm CH_3][\rm OH][M] + \min(k_2[\rm CH_2OH][H], k_3[\rm CH_2OH][M]) + k_9[\rm CH_3OH][H] + \max(k_8[\rm C_2H_2][O], k_{10}[\rm C_2H_2][OH])}$ 

### Method

Continuity-transport equation for number density n



Eddy diffusion flux

$$\Phi = -K_{zz}n_t \frac{\partial}{\partial z} \left(\frac{n}{n_t}\right)$$

K<sub>zz</sub>: eddy diffusion coefficient nt: total number density

Assuming steady-state condition  $(\partial/\partial t = 0)$ 

$$n + \tau_{\rm chem} \frac{\partial \Phi}{\partial z} = n_{\rm eq}$$

E: identity matrix

T: matrix for au chem

Converting n into matrix N

M: matrix for eddy diffusion term

$$(E+TM)N = N_{eq} \Rightarrow N = (E+TM)^{-1}N_{eq}$$

## Calculation Setup

- Spectral retrieval code: ARCiS (Min et al. submitted)
- Chemistry: equilibrium VS disequilibrium
- T-P profile: Analytical solution of Guillot (2010)
- Clouds: Ormel & Min (2019)
  (NaAl)<sub>x</sub>Mg<sub>y</sub>SiO<sub>3</sub>, SiO<sub>2</sub>, Fe, FeS, Al<sub>2</sub>O<sub>3</sub>, C, SiC, TiO<sub>2</sub>, VO
- 12 parameters:
  - Chemistry Kzz
  - Rref
  - C/O, Si/O, N/O, metallicity
  - Tint, firr,  $\gamma$  (=  $\kappa$  vis/ $\kappa$  IR),  $\kappa$  vis
  - Cloud Kzz and nucleation rate

### Planet Samples



10 hot Jupiters with high-quality transmission spectra observed with HST and Spitzer

### TRANSMISSION SPECTRA

#### HD 209458b K<sub>zz</sub> = 1.1 x 10<sup>11</sup> cm<sup>2</sup>/s

#### WASP-31b K<sub>zz</sub> = 2.7 x 10<sup>2</sup> cm<sup>2</sup>/s



Large differences in NH<sub>3</sub> features

Almost similar

### MOLECULAR DISTRIBUTIONS

#### HD 209458b K<sub>zz</sub> = 1.1 x 10<sup>11</sup> cm<sup>2</sup>/s

#### WASP-31b $K_{zz} = 2.7 \times 10^2 \text{ cm}^2/\text{s}$



### MOLECULAR DISTRIBUTIONS

#### HD 209458b WASP-31b $K_{zz} = 1.1 \times 10^{11} \text{ cm}^2/\text{s}$ $K_{zz} = 2.7 \times 10^2 \text{ cm}^2/\text{s}$ $10^{-6}$ $10^{-6}$ **CH**₄ NH<sub>3</sub> CO 10<sup>-4</sup> | 10<sup>-4</sup> Pressure [bar] Pressure [bar] 10<sup>-2</sup> ' H<sub>2</sub>O CH. $10^{0}$ $10^{0}$ NH<sub>3</sub> **H**<sub>0</sub> $10^{2}$ $10^{2}$ 10<sup>-5</sup> 10<sup>-7</sup> 10<sup>-4</sup> 10<sup>-8</sup> 10<sup>-6</sup> 10<sup>-5</sup> 10<sup>-6</sup> $10^{-8}$ $10^{-7}$ $10^{-4}$ $10^{-3}$ $10^{-3}$ **Volume Mixing Ratio Volume Mixing Ratio** Ignoring chemical disequilibrium process can result in incorrect abundances

### CLOUD AND CHEMISTRY KZZ



We can retrieve profile of K<sub>zz</sub> and explore its trend **Cloud K<sub>zz</sub> is almost** similar

 Chemistry K<sub>zz</sub> is lower than cloud K<sub>zz</sub>: lower K<sub>zz</sub> in the lower atmosphere?

Tentative trend of higher **chemistry K**zz for hotter atmospheres?

#### CAN WE EXPLORE DISEQUILIBRIUM EFFECT BY ARIEL?



### SUMMARY

- We have developed a model to compute the quenching pressure for each species as a function of the eddy diffusion coefficient using the chemical timescales as derived by Tsai et al. (2018)
- We have implemented this module to the spectral retrieval code ARCiS (Min et al. submitted)
- We have found evidence for disequilibrium chemistry for some planets such as HD 209458b while almost equilibrium chemistry for planets such as WASP-31b
- ARIEL provides us the opportunity to explore disequilibrium chemistry through NH<sub>3</sub> absorption features for good targets such as HD 209458b