

On the synergy between ARIEL and ground-based high-resolution spectroscopy

G. Guilluy, A. Sozzetti, P. Giacobbe, A.S. Bonomo, G. Micela

ARIEL

Exoplanet Atmospheres: LRS vs. HRS LRS HRS

- multiple species overlapping → ambiguities in molecular identification
- Space-based observation → no telluric contamination
- at LRS atmospheric retrieval starting from the observation is more readily performed

molecular lines are resolved → no ambiguities in molecular identification

- ground-based observations → there are traces of our atmosphere
- retrieving atmospheric properties from HRS data is challenging

HRS: Abundance determination?

In some case it's difficult to set detection significances in a fully principled way, or derive temperatures and abundances as required to extract physical information on the planet's atmosphere

Combining HRS & LRS

The potential for improved characterization applies to the combination of HRS from the ground with HST, JWST, and naturally ARIEL LRS

- Brogi&Line2019 introduce a robust unbiased framework to combine HRS and LSR
 - → they analysed a narrow spectral range: the VLT CRIRES K-band
- Now spectrographs like GIANO-B, CARMENES, SPIROU are available and soon NIRPS and CRIRES+
- → we have to apply this framework on a bigger spectral coverage

A study case

- A representative Hot Jupiter
- Separate LRS & HRS analysis (multiple molecules)
 real data
- Adding ARIEL simulated data
- First qualitative statements and work in progress

GIANO-B analysis

Instrument

Location

Spectral coverage

Resolution

GIANO-B

TNG, La Palma (Spain)

(0,95-2,45) μm

50 000

- 4 transit nigths gathered with GIANO-B.
- Spectra extraction and wavelength calibration performed with the GOFIO tool (M. Rainer)
- PCA analysis to separate the planetary signal from the stellar and telluric contamination
- Cross-correlation with model templates (Guillot T/P profile)
- Shift in the planetary rest frame.

-50	0 Vrest[Km/s	50]	
Giaco	bbe et	al. in	Prep

- If we decrease of 1 order of magnitude the log₁₀(H₂O) the SNR decreases, of 2 orders the detection becomes very weak
- It is analogous for CO, and HCN.

HST/WFC3 analysis

-1 HST/WFC3 visit analysed with the public avaiable **Iraclis pipeline** (Tsiaras et al. 2018a) **TauREx** atmospheric retrieval code (Waldmann et al. 2015a,b)

	H2O+HCN+CO Isothermal T/P profile	H2O+HCN+CO Guillot T/P profile
σ	6	6
Log10(H2O)	$-4,38^{+0,33}_{-0,32}$	$-4,59^{+0,20}_{-0,25}$
Log10(HCN)	$-6,19^{+0,90}_{-1,17}$	$-6,42^{+0,82}_{-0,95}$
Log10(CO)	$-5,37^{+2,23}_{-1,81}$	$-5,53^{+1,76}_{-1,56}$

Retrieval with 7

Instrument	Range[µm]	log(H2O)	log(CO)	log(HCN)
Input		-3.920	-5.097	-4.398
NIRSpec	1,12-1,93	$-3.\ 31^{+0,30}_{-0,56}$	$-4.97^{+1,95}_{-2,02}$	$-4.22^{+0,39}_{-0,67}$
AIRS-CH0	1,95-3,78	$-3,92^{+0,17}_{-0,20}$	$-6,17^{+1,58}_{-1,27}$	$-4,50^{+0,22}_{-0,22}$
AIRS-CH1	3,96-7,63	$-4.57^{+0,56}_{-0,83}$	$-6.81^{+1,06}_{-0,79}$	$-4.93^{+0,48}_{-0,59}$
HST-WFC3-G141	1,125 – 1,650	$-4.17^{+0,99}_{-0,67}$	$-4.87^{+2.12}_{-2.16}$	$-4.59^{+0,84}_{-0,77}$
GIANO	0,95-2,45	$-3,59^{+0,25}_{-0,24}$	$-5,74^{+1,82}_{-1,54}$	$-4,16^{+0,27}_{-0,27}$

- We need a comparison between the LSR and the HSR results before combining them
- Where we note differences, we have to combine HSR and LSR
- Following Brogi&Line2019 (or similar approaches) we can combine LSR and HSR on a range as wide as the GIANO-B one

To do next...

- Complete the development of a framework to:
- a) directly compute the likelihood of the model fit to the data, and explore the posterior distribution of parameterised model atmospheres
- b) explore how to break degeneracies, detect additional molecules, adopt more sophisticated atmospheric models
- A true synergy between space observatories and ground-based high-resolution observations lies ahead!