CHEOPS

An exoplanet follow-up mission

Willy Benz, University of Bern, Switzerland on behalf of the CHEOPS Team

CHEOPS

ESA’s first S-mission

<table>
<thead>
<tr>
<th>goal</th>
<th>measurement of the size of planets orbiting bright stars</th>
</tr>
</thead>
<tbody>
<tr>
<td>targets</td>
<td>V<12 stars already known to host planets</td>
</tr>
<tr>
<td>wavelength</td>
<td>optical: 400 to 1100 nm</td>
</tr>
<tr>
<td>telescope</td>
<td>Ritchey-Chretien telescope, effective aperture 30cm, F/5 optics, FoV 17'x17' arc min.</td>
</tr>
<tr>
<td>spacecraft</td>
<td>Airbus D&S design, 3-axis stabilised, nadir locked, 1.5x1.5x1.5 m, 290 kg</td>
</tr>
<tr>
<td>orbit</td>
<td>LEO sun-synchronous, LTAN 6am, 700km altitude</td>
</tr>
<tr>
<td>timeline</td>
<td>selected: November 2012 adopted: February 2014 launched: December 2019 operations: 3.5 years nominal</td>
</tr>
</tbody>
</table>

Kourou: 18.12.2019 (credit: Arianespace)
CHEOPS

ESA’s first S-mission

<table>
<thead>
<tr>
<th>Goal</th>
<th>Measurement of the size of planets orbiting bright stars</th>
</tr>
</thead>
<tbody>
<tr>
<td>Targets</td>
<td>V<12 stars already known to host planets</td>
</tr>
<tr>
<td>Wavelength</td>
<td>Optical: 400 to 1100 nm</td>
</tr>
<tr>
<td>Telescope</td>
<td>Ritchey-Chretien telescope, effective aperture 30cm, F/5 optics, FoV 17’x17’ arc min.</td>
</tr>
<tr>
<td>Spacecraft</td>
<td>Airbus D&S design, 3-axis stabilised, nadir locked, 1.5x1.5x1.5 m, 290 kg</td>
</tr>
<tr>
<td>Orbit</td>
<td>LEO sun-synchronous, LTAN 6am, 700km altitude</td>
</tr>
<tr>
<td>Timeline</td>
<td>selected: November 2012 adopted: February 2014 launched: December 2019 operations: 3.5 years nominal</td>
</tr>
</tbody>
</table>

1) Transits of super Earth-size planets around G5 dwarfs of V < 9 and radius to < 10% accuracy:
 20 ppm in 6h of integration

2) Transits of Neptune-size planets around K dwarfs of V < 12 and radius to < 2% accuracy:
 85 ppm in 3h of integration

January 12: CHEOPS as seen from the SAINT-EX robotic 1m telescope located at the National Astronomical Observatory of Mexico at San Pedro Martir. Estimated visual magnitude: ~ 8.4
CHEOPS

CHEOPS is ESA’s first S-mission, with the goal of measuring the size of planets orbiting bright stars. The mission targets V<12 stars already known to host planets. The wavelength for the observation is optical, ranging from 400 to 1100 nm. The telescope is a Ritchey-Chretien telescope with an effective aperture of 30 cm, F/5 optics, and a FoV of 17' x 17' arc min. The spacecraft is an Airbus D&S design, 3-axis stabilised, nadir locked, with dimensions of 1.5 x 1.5 x 1.5 m and a mass of 290 kg. The orbit is a LEO sun-synchronous, LTAN 6am, at an altitude of 700 km. The timeline includes selection in November 2012, adoption in February 2014, launch in December 2019, and operations for 3.5 years nominal.
CHEOPS

ESA’s first S-mission

<table>
<thead>
<tr>
<th>goal</th>
<th>measurement of the size of planets orbiting bright stars</th>
</tr>
</thead>
<tbody>
<tr>
<td>targets</td>
<td>V<12 stars already known to host planets</td>
</tr>
<tr>
<td>wavelength</td>
<td>optical: 400 to 1100 nm</td>
</tr>
<tr>
<td>telescope</td>
<td>Ritchey-Chretien telescope, effective aperture 30cm, F/5 optics, FoV 17’x17’ arc min.</td>
</tr>
<tr>
<td>spacecraft</td>
<td>Airbus D&S design, 3-axis stabilised, nadir locked. 1.5x1.5x1.5 m, 290 kg</td>
</tr>
<tr>
<td>orbit</td>
<td>LEO sun-synchronous, LTAN 6am, 700km altitude</td>
</tr>
<tr>
<td>timeline</td>
<td>selected: November 2012 adopted: February 2014 launched: December 2019 operations: 3.5 years nominal</td>
</tr>
</tbody>
</table>
CHEOPS

ESA’s first S-mission

- **Goal**: Measurement of the size of planets orbiting bright stars
- **Targets**: V<12 stars already known to host planets
- **Wavelength**: Optical: 400 to 1100 nm
- **Telescope**: Ritchey-Chretien telescope, effective aperture 30cm, F/5 optics, FoV 17'x17' arc min.
- **Spacecraft**: Airbus D&S design, 3-axis stabilised, nadir locked. 1.5x1.5x1.5 m, 290 kg
- **Orbit**: LEO sun-synchronous, LTAN 6am, 700km altitude
- **Timeline**: Selected: November 2012, Adopted: February 2014, Launched: December 2019, Operations: 3.5 years nominal
CHEOPS

ESA’s first S-mission

<table>
<thead>
<tr>
<th>Goal</th>
<th>Measurement of the size of planets orbiting bright stars</th>
</tr>
</thead>
<tbody>
<tr>
<td>Targets</td>
<td>V<12 stars already known to host planets</td>
</tr>
<tr>
<td>Wavelength</td>
<td>Optical: 400 to 1100 nm</td>
</tr>
<tr>
<td>Telescope</td>
<td>Ritchey-Chretien telescope, effective aperture 30cm, F/5 optics, FoV 17’x17’ arc min.</td>
</tr>
<tr>
<td>Spacecraft</td>
<td>Airbus D&S design, 3-axis stabilised, nadir locked. 1.5x1.5x1.5 m, 290 kg</td>
</tr>
<tr>
<td>Orbit</td>
<td>LEO sun-synchronous, LTAN 6am, 700km altitude</td>
</tr>
<tr>
<td>Timeline</td>
<td>Selected: November 2012 Adopted: February 2014 Launched: December 2019 Operations: 3.5 years nominal</td>
</tr>
</tbody>
</table>
CHEOPS: an ESA small mission

- ESA S-class missions approved by SPC in 2011 and first call issued in February 2012

Requirements
- Scientific excellence in any area
- Cost
 - Total cost < 150 M€
 - Cost to ESA: not to exceed 50 M€
- Schedule
 - Developed and launched within 4-5 years

- CHEOPS selected in 2012 as a Partnership with Switzerland with important contributions from 10 other member states

The mission has been launched within schedule and allocated budget
The CHEOPS organisation

Joint overall lead: ESA - Switzerland

CHEOPS
Consortium: institutes from 11 countries

Payload
- Switzerland: Payload system engineering & AIT telescope structure
- Austria: DPU, PSDU flight software
- Belgium: baffle
- Germany: Focal Plane Assembly
- Hungary: radiators
- Italy: optical system

SOC
- Switzerland: Operations Data products
- France: Data Reduction Software
- Portugal: Mission Planning, Archive, & Data Reduction Software
- Sweden: data simulator
- UK: Quick look

MOC
- Spain: Mission Operations Center

New approach to mission development had to be implemented to allow meeting schedule and budget requirements

- launching state
- platform procurement
- launch services
- CCD
- space debris service
CHEOPS Science

defined by the CHEOPS science team

accurate sizing: M/R relation

Atmospheres: phase curves

Exomoons, rings, etc.

Discovery and masses

Golden targets for future facilities

CHESS
CHEOPS-TESS collaboration

+ 20% open time
CHEOPS-TESS Synergy: CHESS

targets:
planets orbiting bright stars

sky coverage:
bright stars are everywhere

Complementary in science goals and sky coverage!
Science programme: 2 pillars

Garanteed time observing (GTO): 80%

- Ancillary 20%
- Improving radii 25%
- Exploring new planets 15%
- Characterising atmospheres 20%
- Uncovering new features 5%
- Finding transits 15%

Defined by the CHEOPS Science Team
(proprietary time: ~1 year)

Guest observing (GO): 20%

- Open to all
- Two options for obtaining time:
 1. yearly ESA call for proposals (AO); selection on scientific merit by ESA appointed TAC
 2. director’s time (DT, up to 25% of GO), will start after launch with a focus on new targets; proposals selected by ESA Director of Science
- Result of first AO: https://www.cosmos.esa.int/web/cheops-guest-observers-programme/ao-1-programmes
- Next AO: TBD (probably autumn 2020)

get more infos at:
https://www.cosmos.esa.int/web/cheops-guest-observers-programme
and poster at this conference

Defined by the community
(proprietary time: ~1 year)
January - March 2018
CHEOPS Lab
University of Bern

- Flat fields in multi-color (narrow & broad-band)
- PSF over field of view and multi-color
- Gain sensitivities
- Dark current maps
- Bad pixels / full well depth
- Stability tests using super stable light source

Noise curve of corrected and de-trended light curve
Data acquisition

- **Telescope**: FoV: 24' (1'' / pixel)
- **BEO**: FoV: 20'
- **CCD**: 1k x 1k
- **Subarray image**: 200×200 pixels
- **Defocused image**: 90% of energy in 24 px
 - S/C jitter 4'' rms
- **Sun-synchronous polar orbit**: Measuring overnight side
 - Radiators always pointing to space
- **CHEOPSIm**: The field is rotating around the target star because CHEOPS is nadir-locked
Data acquisition

- Spacecraft platform ADS/CASA (via ESA)
- Ground station downlink at ~1.2 Gbit/day
- Mission Operation Centre (MOC) Madrid
- Science Operation Center (SOC) Geneva
- Back-up ground station Villafranca (ESAC)
- Data archive mirror Rome
Latest news

- Launch and Early Orbit Phase (LEOP) concluded successfully

- January 8: Beginning of in-orbit commissioning
 - Instrument switched on successfully, health-check passed
 - Telescope temperature stabilisation successfully achieved
Latest news

• January 9:
 - First dark (cover closed) image taken and successfully transmitted to ground station

• January- March
 - In-orbit calibration of CCD and read-out electronics
 - opening of the cover
 - Testing all requirements, determining performances

• ~ April 1
 - Nominal start of science operation