

Atmospheric retrieval for the ARIEL spectral database

Michiel Min (SRON) Ingo Waldmann (UCL) Joanna Barstow (UCL)

Netherlands Institute for Space Research

Netherlands Organisation for Scientific Research (NWO

Aim of retrieval

- Derive the atmospheric composition from the ARIEL spectra
 - 1) molecular abundances
 - 2) elemental abundances
 - 3) thermal structure of the atmosphere
- The retrieval is always right (your question might be irrelevant though...)
 - Retrieval answers the question:

What is the best set of parameters - and the accompanying uncertainty - representing the data given all the assumptions in the forward model?

What are the exact physical parameters of the system observed?

Sometimes it feels like....

RON

This is the retrieval giving us the answer 42

This is us thinking about what the real question actually was. Using:

- Complex disequilibrium chemistry
- GCM modelling
- Cloud formation models

Aim of retrieval

- Derive the atmospheric composition from the ARIEL spectra
 - 1) molecular abundances
 - 2) elemental abundances
 - 3) thermal structure of the atmosphere
- The retrieval is always right (your question might be irrelevant though...)
 - Retrieval answers the question:

What is the best set of parameters - and the accompanying uncertainty - representing the data given all the assumptions in the forward model?

What are the exact physical parameters of the system observed?

RETRIEVAL CODES USED

TauREx, NEMESIS, ARCiS

NEMESIS

NEMESIS

- Correlated-k approximation for opacities
- Either nested sampling or optimal estimation
- Not linked to thermal or chemical equilibrium models so free retrieval
- Includes multiple scattering and reflected light
- Suitable for Solar System objects -> brown dwarfs
- 2.5D retrieval mode for simultaneous retrieval of phase curve observations

TauREx 3

- Built from the ground up as full python stack
- 10 200 times faster than TauREx 2
- Fully tested against TauREx 2 which has been benchmarked against NEMESIS, CHIMERA, ARCiS
- For full installation type: "pip install taurex"
- Plugin features and TauREx extensions
- New and fast cross sections
- Fully open under BSD license

Al-Rafaie et al. arXiv: 1912:07759

Ultra-Fast retrievals

- TauREx 3 was built for speed. 10 to >100 times faster than TauREx 2.
- Fully Python 3.x but achieves speeds of compiled languages like C
- Uses JIT compilation of forward models with Numba
- Full use of numpy vectorisation and numexpr for faster numpy operations
- TauREx 3.1 includes full GPU support -> No more performance loss for JWST wavelengths and large line-by-line retrievals

	TauREx 2	TauREx 3
R	xsec (s)	xsec (s)
7000	0.57	0.039
10000	0.85	0.062
15000	1.02	0.092

	TauREx 2	TauREx 2	TauREx 3
Molecules	xsec (s)	k-tables (s)	xsec (s)
1	7.23	0.45	0.61
2	8.90	0.78	0.74
4	12.42	1.49	0.92
7	19.02	2.63	1.23
15	263.56	8.21	2.34

	TauREx 2	TauREx 2	TauREx 3
Layers	xsec (s)	k-tables (s)	xsec (s)
50	2.24	0.20	0.24
100	8.60	0.79	0.62
150	19.29	1.81	1.53
200	35.53	3.04	2.29
600	876.24	28.90	15.35

Al-Rafaie et al. arXiv: 1912:07759

ARCiS scheme

ARIEL retrieval challenge

Welcome to the Ariel Atmospheric Retrieval Challenge. The Ariel Space mission is a European Space Agency mission to be launched in 2028. Ariel will observe the atmospheres of 1000 extrasolar planets - planets around other stars - to determine how they are made, how they evolve and how to put our own Solar System in the gallactic context.

Atmospheric Retrievals

In preparation to the Ariel Red Book, we run this atmospheric retrieval challenge as a conduit to conduct forward model comparison as well as full retrieval comparison. The retrieval challenge will be run in 2 stages. The first stage will entail relatively simple model/retrieval comparisons. Stage 2 will entail a range of forward models in varying complexity. Each participant will be scored on the accuracy of their retrievals and their forward models. For more

m

ARIEL retrieval challenge

Prepared by Jo Barstow

Sensitivity study - molecules

Targets to include for this:

- 55 Cnc e
- GJ 1132 b
- GJ 1214 b
- K2-266 b
- GJ 3470 b
- HD 209458 b
- HAT-P-11 b
- HAT-P-17 b

Standard model contains:

- H2O (1e-4 level)
- CH4 (1e-5 level)
- CO (1e-5 level)
- CO2 (1e-4 level)

Doing these tests came down to doing ~700 full retrievals

Sensitivity study - molecules

Alfnoor results (talk by Lorenzo Mugnai)

Cloud formation model

Condensation of MgSiO3 (pyroxene) using vapour pressure equations

OM.

 $\partial \mathcal{M}_{c}$

- **Particle settling (rain)** •
- **Particle coagulation**
- **Diffusion** parameterized using diffusion strength
- **Nucleation rate is a free parameter**

Fundamental physics is captured while unknowns are $\mathcal{M}_c/K_p \rho_{\rm gas}$

parameterized $x_n v_{\text{sed},p}/K_p - \mathcal{M}_n/K_p \rho_{\text{gas}}$

 $= -\mathcal{M}_v/K_v \rho_{\rm gas}$

Clouds and hazes

Sing et al. 2016, Nature

Min et al. (submitted)

Phase curve retrieval

no clouds

Work from Jake Taylor for the phase curve WG report

RON

GCM model for WASP43b using THOR ^E (Mendonca et al (2018)

Phase curve retrieval

NEMESIS

Summary/takeaway message

• Your retrieval is only as good as the underlying forward model. Always remember the question you asked.

- We have many tools available
- ARIEL will be able to measure accurate molecular abundances for many molecules
- Adding complexity is possible, can be advantageous and sometimes even needed
 - (diseq.) Chemistry
 - Clouds
 - 3D structures

