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TauREXx 3

e Built from the ground up as full python stack
e 10 - 200 times faster than TauREXx 2

e Full NVIDIA and OpenCL GPU support (another
50x faster for JWST or high-res)

e Fully tested against TauREx 2 which is
benchmarked against NEMESIS, CHIMERA,

ARGIS 7REx2  7-REx2 7-REx3
Molecules  xsec (s) k-tables (s)  xsec (s)

e For full installation type: “pip install taurex”

1 122 0.45 0.61
* Plugin features and TauREX extensions 2 8.90 0.78 0.74
4 12.42 1.49 0.92
0 0O . A
* New and fast cross sections i TN T T

> (Ul eppen uncter B eense Al-Rafaie et al. submitted, arXiv: 1912:07759

https://github.com/ucl-exoplanets/TauREx3



Retrieval model comparison

¢ \We are comparing forward models and retrieval results with Mike Line and Jo Barstow

e Exact comparison between line list differences
e K-coeffcients (NEMESIS) vs cross-section approaches (Chimera, Tau-REX)

e Open up wider model comparison in data challenge

later on this year

Chimera vs NEMESIS vs TauREXx
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The retrieval bottleneck

*Classical sampling slow =N | |
(MCMC, Nested Sampling) - -
| |l bal d
> 105 - 106 forward model well balanced paper
iterations 3

| Sam

e Temperature-Pressure profiles

{ : ¢ Cloud models
PRYSICS || 5icequiiorium chemistry
¢ 3D effects -> GCMs

¢ Extremely large databases i

‘ Line lists
ExoMol HiTemp r
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Robotic Exoplanet Recognition (RObERL)
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The brave new world of deep learning
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statistics
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Machine Learning
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Classifying galaxies in Galaxy Z00

e.g. Dielmann et al. 2015, Lukic et al. 2018



earning the cosmic web from N-body simulations

Geerative Adversarial Network

L R . < » ]

Rodriguez et al. 2018




Some other application examples

e Superresolution imaging of planetary PSEGAN
surfaces
Learning instrument point spread functions from data
e De-trending in weak lensing [ e o
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e Crater counting on planetary surfaces
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Searching for exoplanets

e The Kepler and TESS data set is ideal to train neural networks
e Neural nets can outperform more classical detection pipelines
e Can probe lower signal-to-noise data than other methods

¢ Can include domain knowledge in search (Ansdell et al. 2019)
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Figure 4. Fully connected neural network architecture for classifying light

BJD-2454833 (days)
curves, with both global and local input views.

Shallue & Vandenburg 2018, Dattilo et al. 2019 Pearson, Palofax & Griffith 2018



Searching for exoplanets

e Significant work being done in this field

using a range of techniques

¢ Understanding instrument systematics are
the main hindrance (pixel sensitivity
variations as function of space craft orbit)

¢ All data is publicly available and well

documented

Example of transit data
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Correcting time series data using probabilistic LSTMs
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¢ Exploits the spatial and time dependence
of systematic noise

¢ Nearly infinitely scalable to huge data sets
such as Kepler or TESS (Gaussian
Processes are restricted here)

¢ Probabilistic time forecasting, i.e. accurate
error bars

Morvan et al., AJ accepted,
arXiv: 2001:03370




Predicting additional planets in a system

e Predicting the likelihood of extra planets existing in a system

e Potentially increases transit detection efficiencies significantly
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Knowing the retrieval likelihood

Areas of interest
( Sampling is hard and time consuming

Nested Sampling is currently the norm,
Drawing “nests” of interest where
sampling will be more pronounced.

NS does sample the full likelihood and
gets the Evidence.

p(x) = [p(x | )p(6)db

Not a real exoplanet
likelihood

<% Do we need to sample here?

100 10



Knowing the retrieval likelihood

Sampling is hard and time consuming

carning the likelihnood using neural
RetS\can significantly speed up the
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Not a real exoplanet
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Producing the mapping between data and posterior

Can we map from the data to the posteriors directly?
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Machine learning atmospheric retrievals

¢ Machine learning approach using random forests

¢ | earns to repeat retrieval of a planet (e.g. WASP-12b) very fast

«  100ppm (R? = 0.688)
-+ 10ppm (R? = 0.797)

«  100ppm (R? = 0.527)
- 10ppm (R? = 0.691) &

+  100ppm (R? = 0.405)
«  10ppm (R? = 0.558)
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Machine learning atmospheric retrievals

¢ Machine learning approach
using Ensemble Neural Nets

Spectra
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Comorete Dromot e | ecarns to repeat retrieval of a
( Dense Layer 1 ) planet (e.g. WASP-12b) very
Y ) fast

Concrete Dropout

Dense Layer 2
(. J/

( )
Concrete Dropout
Dense Layer 3

(. J/

Concrete Dropout z
Dense Layer 4

Atwork OutpLM

T e
L =E[L,] *. Network samples .~ # = E [u;]

-10 ‘ %
Atmospheric Parameters: =
0~ N (u,(LL")™) # A ’ Hﬁ

1000 2000 -10 =5 0 -10 =5 0 -10 -5 0 -10 0
T (K) H,0 HCN NH; Ko

HCN
I
A |

NH;

Cobb et al. 2019



Two schools of thought:
to likelihood or not to likelihood

The variational autoencoder




The latent variable space as probabillities

The variational autoencoder
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Adversarial Learning: Generative Adversarial Networks

A likelihood free approach

P data
Real data

I P generated 5& Pdata

Fake

Real

i P generated — Pdata

Generated data
Goodfellow et al. 2014

P generated
Zingales & Waldmann 2018



Inpainting

Completing missing information given available data and what the
algorithnm has learned from training

Missing data

to be completed

Well trained Pogrly trained

Corrupted
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Spectral reconstruction

Spectrum Parameters

e

WFC3 mask Reconstruction

Zingales & Waldmann 2018



Spectral reconstruction

Test set parameters

Variable A(0oy) A(loy) A(204)
CO 62.8% 72.6% 78.2%
COq 94.2% 96.6% 97.4%
H>O 89.6% 92.8% 93.9%
CH4 80.3% 88.2% 91.6%
R, 100.0% 100.0% 100.0%
M, 88.0% 89.7% 90.8%
T, 90.4% 92.2% 93.2%
. : .
Zingales & Waldmann 2018
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Conclusions

Where to go from here:

e Better understanding ana
exploiting entropy & sparsity

e Build more tractable neural
net architectures

e Formally including data
likelihoods

We are hiring!

THIS 1S YOUR MACHINE (EARNING SYSTEM?

YUP! YOU POUR THE DATA INTO THIS BIG
PILE OF LNEAR ALGEBRA, THEN COLLECT
THE ANSWERS ON THE OTHER SIDE.

WHAT IF THE ANSLERS ARE WRONG? )

JUST STIR THE PILE UNTIL
THEY START LOOKING RIGHT.




