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•  Built from the ground up as full python stack 

•  10 - 200 times faster than TauREx 2  

•  Full NVIDIA and OpenCL GPU support (another 
50x faster for JWST or high-res) 

•  Fully tested against TauREx 2 which is 
benchmarked against NEMESIS, CHIMERA, 
ARCiS 

•  For full installation type: “pip install taurex” 

•  Plugin features and TauREx extensions 

•  New and fast cross sections 

•  Fully open under BSD license 

https://github.com/ucl-exoplanets/TauREx3
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⌧ -REx 2 ⌧ -REx 2 ⌧ -REx 3
Molecules xsec (s) k-tables (s) xsec (s)

1 7.23 0.45 0.61
2 8.90 0.78 0.74
4 12.42 1.49 0.92
7 19.02 2.63 1.23
15 263.56 8.21 2.34

Table 6: A comparison of the forward model computation time between TauREx 2 using cross-sections, TauREx 2 using
k-tables and TauREx 3 using cross-sections for the same atmospheric parameters but increasing number of molecules

⌧ -REx 2 ⌧ -REx 3
R xsec (s) xsec (s)

7000 0.57 0.039
10000 0.85 0.062
15000 1.02 0.092

Table 7: Comparing ⌧ -REx 2 and ⌧ -REx 3 in the region of HST with different cross-section resolution

model as before and test with three different resolutions of cross-sections. The wavelength region considered is
⇡ 1.1� 1.7µm which is the same as the Hubble Space Telescope.

Table 7.1 highlights how cross-section resolution influcences the computational time of TauRex3 reaching around 10x
performance gain which should give significantly shorter retrieval times.

8 Retrieval Benchmark: HD 209458 b

For our retrieval benchmark we will study HD 209458 b, our first test will benchmark the current HST data and the
second will retrieve a simulated observation from Ariel. For the optimiser, we use MultiNest [24] compiled with MPI.
We utilize 1500 live points and an evidence tolerance of 0.5. This choice of parameters allows for very precise sampling
of the parameter space. Each retrieval is done on a single node in the UCL cobweb cluster which has a 24-core Xeon
E5-2697 v2 clocked at 2.70GHz.

For the first test, we compare the results of ⌧ -REx 3 with the ones from ⌧ -REx 2 in a real scenario for transmission and
emission spectroscopy. We use the HST/WFC3 spectrum of HD 209458 b in [25] for our transmission scenario and the
HST/WFC3 spectrum from [26] for the emission case. For the latter case, we chose to not include the Spitzer points for
our retrievals as combining instruments may lead to strong biases [27].

In our comparison retrieval, we attempt to constrain isocompositions for 5 molecules (H2O, CH4, CO, CO2 and NH3),
using cross sections at a resolution of 10000 given in Table 7.1.

Time (s) ⌧ -REx 2 (s) ⌧ -REx 3 (s) Num samples Speedup

Transit 6140 837 110,000 7.3
Eclipse 3569 780 66,000 4.5

Table 8: A comparison of the retrieval model computation time between TauREx 2 and TauREx 3 using cross-sections
for the same atmospheric priors
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TauREx 3 3

Al-Rafaie et al. submitted, arXiv: 1912:07759



Retrieval model comparison 
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• We are comparing forward models and retrieval results with Mike Line and Jo Barstow 
• Exact comparison between line list differences  
• K-coeffcients (NEMESIS) vs cross-section approaches (Chimera, Tau-REx) 

• Open up wider model comparison in data challenge  
later on this year 



The retrieval bottleneck
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• Extremely large databases

• Temperature-Pressure profiles 
• Cloud models 
• Disequilibrium chemistry  
• 3D effects -> GCMs

•Classical sampling slow 
(MCMC, Nested Sampling) -
> 105 - 106 forward model 
iterations

well balanced paper
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The brave new world of deep learning



The era of big data in astronomy 

LSST: 60 Pb of data 
SKA: >37 Tb/s, total of 5 Zetabytes by 2030



Classifying galaxies in Galaxy Zoo
8 Dieleman, Willett & Dambre
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Figure 4. Schematic overview of a neural network architecture for exploiting rotational symmetry. The input image (1) is first rotated to

various angles and optionally flipped to yield di↵erent viewpoints (2), and the viewpoints are subsequently cropped to reduce redundancy

(3). Each of the cropped viewpoints is processed by the same stack of convolutional layers and pooling layers (4), and their output

representations are concatenated and processed by a stack of dense layers (5) to obtain predictions (6).

input augmented input

predictions

preprocessing

Section 7.3

viewpoint extraction

Section 7.5

model averaging

Section 7.8

preprocessed input viewpoints

averaged predictions

augmentation

Section 7.4

convnet

Section 7.6

Figure 5. Schematic overview of the processing pipeline.

c� 2014 RAS, MNRAS 000, 1–20

e.g. Dielmann et al. 2015, Lukic et al. 2018 



Learning the cosmic web from N-body simulations

Figure 1: Samples from N-body simulations (top two rows) and from our GAN model
(bottom two rows) for a box size of 500 Mpc. Note that the transformation in Equation 3.1
with k = 20 was applied to the images shown above for better readability.

statistics. The exception is a small difference in the power spectrum for 100 Mpc images,
on which we comment below. Finally, the bottom right panels show the average cross power
spectra, with the coloured bands corresponding to the standard deviation calculated using all
available image pairs. As expected, the cross power spectrum of the original images is close
to zero. We do not find significant discrepancies in the cross power spectrum between pairs
consisting of N-body- and GAN-generated image, as well as between pairs of GAN-generated
images. This indicates that the generated images can be also considered as independent re-
alisations of cosmic web.
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Some other application examples

2514 D. Stark et al.

radial light profile (Boyce, Disney & Bleaken 1999). These meth-
ods however systematically overestimate the quasar contribution
and only yield a lower limit for the host galaxy flux. Later studies
showed that fitting two-dimensional galaxy components simultane-
ously with the point source (PS) component yields the most robust
method (Peng et al. 2002; Bennert et al. 2008).

One of the most popular methods used for two-dimensional sur-
face profile fitting is GALFIT (Peng et al. 2002, 2010). Its ability to
recover PS fluxes and host galaxy parameters has been demonstrated
several times both for HST images (Kim et al. 2008; Simmons &
Urry 2008; Gabor et al. 2009; Pierce et al. 2010) and for ground-
based images (Goulding et al. 2010; Koss et al. 2011). GALFIT is a
very powerful tool for detailed morphological decomposition of sin-
gle cases but it was not designed for batch fitting (Peng et al. 2002).
In the era of ‘big data’ in astronomy,1 where large data sets have to
be efficiently analysed without human interaction, parametric fitting
might not be an efficient approach. Nevertheless there have been
approaches (Vikram et al. 2010; Barden et al. 2012) to automate
GALFIT by combining it with SEXTRACTOR (Bertin & Arnouts 1996),
but these methods still depend on their input parameters.

Machine learning (ML) often accomplishes the demand for au-
tomation and scalability in data analysis. Various ML techniques
have been applied to astronomy, for example in outlier detection
(Baron & Poznanski 2017), galaxy classification (Dieleman, Willett
& Dambre 2015; Sreejith et al. 2018), or detector characterization
(George & Huerta 2018). The most recent developments in auto-
mated galaxy fitting use Bayesian inference (Yoon, Weinberg &
Katz 2011; Robotham et al. 2017) or deep learning (Tuccillo et al.
2018).

By using a Generative Adversarial Network (GAN; Goodfellow
et al. 2014) we develop the first ML-based method for separating
AGN from their host galaxies. We adopt the GALAXYGAN algorithm
(Schawinski et al. 2017) that was originally conceived to recover
features in noisy ground-based imaging data. Our method is called
PSFGAN as it subtracts point sources from CCD images. We test
the effectiveness of PSFGAN at recovering the AGN (and the host
galaxy) and compare our results to GALFIT. In Section 2 we describe
the overall method, we describe the specific GAN architecture in
Section 2.1, the training and testing procedure in Section 2.2, the
model selection in Section 2.3, and in Section 2.4 the GALFIT fitting
strategy we used for the comparisons. In Section 3 we test the
performance of PSFGAN. Finally, in Section 4 we discuss applications
and limitations.

Throughout this paper, we adopt a cosmology with !m = 0.3,
!" = 0.7, and H0 = 70 km s−1 Mpc−1.

2 M E T H O D

2.1 GAN architecture

In Fig. 1 , we show a graphical scheme of the architecture we
used. A GAN consists of two neural networks: a generator and a
discriminator. The generator creates artificial data sets, and the dis-
criminator classifies a given set as ‘real’ or ‘fake’. The generator and
the discriminator are simultaneously trained. In an ideal case, the
generator recovers the training data distribution (Goodfellow et al.

1 Currently, the total data volume of Sloan Digital Sky Survey
(SDSS) is > 125 TB (Blanton et al. 2017). The Large Synoptic
Survey Telescope (LSST) will produce 15 TB of data per year
(https://www.lsst.org/about/fact-sheets).

Training Architecture

Discriminator

Generator

Preprocessing

Recovered

Original

Original + AGN

Figure 1. Scheme of the architecture used in this work. The generator takes
as input the modified image (original galaxy image with a simulated PS in
its centre) and tries to recover the original galaxy image. The discriminator
distinguishes the original from the recovered image. Before feeding the
images to the GAN they are normalized to have values in [0,1] and transformed
by an invertible stretch function.

2014). Conditional GANs take a conditional input (Reed et al. 2016)
and can be used for image processing (Isola et al. 2017). GALAXY-
GAN takes a degraded galaxy image as conditional input (Schawinski
et al. 2017). During the training the generator tries to recover the
original image from the degraded one. The discriminator learns to
distinguish between the original image and the generator output.
Both networks are trained at the same time to maximize the others
loss and by this means the generator learns the inverse of the trans-
formation that has been applied to the original image. In the testing
phase, the generator is applied to degraded images it has never seen
before, in order to recover the original ones. In this work we choose
the processed image to be the original galaxy image with a simulated
PS representing an unobscured AGN. Using this as the conditional
input, the generator then learns the inverse transformation that is
equivalent to subtracting the PS.

Adding a simulated PS to the centre of a galaxy image will
primarily affect a few pixels at the centre of the image. We therefore
adapt the generator to increase the weight of the central region in
the loss computation.

2.2 Data preparation

We use r-band images from the SDSS (Blanton et al. 2017) as a test
case though PSFGAN can be applied to any CCD imaging data in any
filter. For this proof of concept we choose SDSS data because it is
very homogeneous and has many galaxy images available for large
training sets. We divide the data into a training set, a validation set
for model selection, and a testing set to evaluate model performance.
Each set consists of image pairs (original and conditional input).
However, only during training PSFGAN uses both the original image
without a PS and the conditional input (original image with added
PS). In the validation set and the testing set we use exclusively
the conditional input as we only run the trained generator on these
samples. To avoid overfitting and ensure the generalization ability
of our approach, throughout the whole project, we only use the
testing set once for each of the final experiments. The development
of models is conducted completely using the validation set.

We test PSFGAN on three redshift ranges corresponding to
z ∼ 0.05, ∼0.1, and ∼0.2, respectively. In these ranges we use
424 × 424 pixels (168 × 168 arcsec2) cut-outs of SDSS galaxies
with some variation of redshift to z ∈ [0.045, 0.055], z ∈ [0.095,

MNRAS 477, 2513–2527 (2018)Downloaded from https://academic.oup.com/mnras/article-abstract/477/2/2513/4951616
by University College London user
on 09 July 2018

PSFGAN 
Learning instrument point spread functions from data 

Stark et al. 2018

•  Superresolution imaging of planetary 
surfaces 

•  De-trending in weak lensing 

•  Crater counting on planetary surfaces 

•  Learning instrument responses  

•  etc



Searching for exoplanets

Similar techniques are used by Armstrong et al. (2017; local
binning) and Thompson et al. (2015; global binning away from
the transit and local binning near the transit). Unlike those
papers, we use these two representations as separate inputs to
our model.

Finally, we normalize all light curves to have median 0 and
minimum value –1 so that all TCEs have a fixed transit depth.

4. Automatic Vetting Models

4.1. Neural Network Architectures

We consider three types of neural network for classifying
Kepler TCEs as either “planets” or “not planets.” For each type,
we consider three different input options: just the global view,
just the local view, and both the global and local views.

1. Linear architecture.Our baseline model is a neural
network with zero hidden layers (which is equivalent to
a linear logistic regression model). This is a natural
choice for its simplicity and popularity, but it makes the
strong assumption that the input data is linearly separable
—that is, planets and nonplanets are separated by a linear
decision surface in the input space. If both global and
local views are present, we concatenate them into a single
input vector.

2. Fully connected architecture. A fully connected neural
network is the most general type of neural network and
makes the fewest assumptions about the input data. If
both global and local views are present, we pass the two
vectors through disjoint columns of fully connected
layers before combining them in shared fully connected
layers (Figure 4).

Figure 3. Light-curve representations that we use as inputs to our neural network models. The “global view” is a fixed-length representation of the entire light curve,
and the “local view” is a fixed-length representation of a window around the detected transit. (a) Strong planet candidate. (b) Long-period planet where the transit falls
into just one bin in the global view. (c) Secondary eclipse that looks like a planet in the local view.

Figure 4. Fully connected neural network architecture for classifying light
curves, with both global and local input views.

5

The Astronomical Journal, 155:94 (21pp), 2018 February Shallue & Vanderburg

Shallue & Vandenburg 2018, Dattilo et al. 2019

Searching for exoplanets using AI 489

Figure 13. We evaluate a subset of the Kepler data set where the noise parameter is at least 2, the transit duration is between 7 and 15 h and the period is less
than 50 d. This limits the number of planets to have sufficient data in transit to make a robust single detection and have enough data to measure at least two
transits. Each window of time is from a single Kepler quarter of data. The colour of the data points is mapped to the probability of a transit being present. The
red lines indicate the true ephemeris for the planet taken from the NASA Exoplanet Archive. The phase-folded data are computed with a period estimated from
the data. The period labelled ‘Data’ is estimated by finding the average difference between peaks in the probability–time plot (bottom left). This estimated
period in most cases is similar to the true period and differs if the planet is in a multi-planet system or has data with strong systematics.

processing millions of light curves in a matter of seconds. The dis-
criminative nature of neural networks can only make a qualitative
assessment of the candidate signal by indicating the likelihood of
finding a transit within a subset of the time series. For planet signals

smaller than the noise, we devise a method for finding periodic tran-
sits using a phase folding technique that yields a constraint when
fitting for the orbital period. Neural networks are highly generaliz-
able allowing data to be evaluated with different sampling rates by

MNRAS 474, 478–491 (2018)Downloaded from https://academic.oup.com/mnras/article-abstract/474/1/478/4564439
by University College London user
on 09 July 2018

Pearson, Palofax & Griffith 2018

• The Kepler and TESS data set is ideal to train neural networks 

• Neural nets can outperform more classical detection pipelines  

• Can probe lower signal-to-noise data than other methods  

• Can include domain knowledge in search (Ansdell et al. 2019)
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Fig. 2. The convolutional neural network architectures used in this
work. "CONV": A 1D convolutional layer, with the two following num-
bers referring to the kernel size and the number of filters; "MAXPOOL"
refers to the process of 1D max pooling the tensor, and the numbers re-
fer to kernel size and stride; "FC" is a fully connected, or linear, ANN
layer where the number shows the number of neurons.

1 which has higher than average systematic noise due to un-
expected noise in fine pointing. However, some injected noise
sources have been identified as not present in the real data, such
as the sudden pixel sensitivity dropouts (SPSDs) which were
present in Kepler.

3. Machine Learning Models

3.1. Architecture

In Astronet (Shallue & Vanderburg 2018) and exonet (Ans-
dell et al. 2018), a series of convolutional layers are applied to
the local and global views, with the larger global view having
a deeper convolutional structure. These are then combined to-
gether as inputs for a series of fully connected layers before out-

puting a single class prediction. Figure 2 gives an overview of
the model architecture.

We maintained the convolutional filter sizes and architecture
from Astronet, with four 1-dimensional convolutional layers
for the local view, and 8 for the global view. Every two layers,
max pooling is performed to reduce the overall size of the ten-
sor. With the number of input data points shrunk by a factor of
2 (see section 3.5), the final fully connected layers were simi-
larly shrunk from 512 to 256 neurons. The dimensionality of the
output depends on the model loss function, with either a single
prediction per object (binary) or a prediction per class, per object
(multi-class)

For binary models, the binary cross entropy loss function
(BCEloss in pytorch) was used, whereas for multi-class mod-
els, a Cross Entropy loss (CrossEntropyLoss in pytorch)
function was used. For gradient descent, we used Adam (Kingma
& Ba 2014) as an optimizer with a starting learning rate around
2 ⇥ 10�5.

In all cases, we trained until the output of the loss function
when applied to validation data had stopped decreasing; a sign
that the model is well-fitted but not yet begun to over-fit. This
was between 200 and 500 epochs, depending on the learning
rate and number of classes used.

3.2. Balanced Batch Sampling

Training a neural network using a dataset with an unbalanced
class distribution is di�cult (see, e.g. Chawla et al. 2004), since
the learning algorithm inevitably biases the model towards learn-
ing the majority class. In the case of the Kepler dataset used in
Ansdell et al. (2018), the two classes (planet and non-planet)
were more closely balanced than the data here. This was partly
because candidates labelled as "unknown" by human vetters
(Batalha et al. 2013; Burke et al. 2014; Mullally et al. 2015;
Rowe et al. 2015) were classified and removed from the DR24
sample. However, such a step is not available with our TESS
dataset, hence only 14% of the TCE dataset are planets. It is
therefore necessary to perform dataset balancing in order to train
the network. We took an approach that involves resampling the
input data (rather than, for example, weighting the loss func-
tion). We did this by balancing the mini-batches used in training,
meaning each training epoch sees an equal number of samples
from each class (see, e.g., He & Garcia 2008).

3.3. Cross Validation

To test the model while retaining as much of the data as possible
for training, we used cross validation. This splits the data into k
parts, and independently trains such that a di↵erent subsection of
data is kept as validation data each time, while (k � 1) parts are
used for training. We used k = 8 for all models here, to utilise all
available GPUs4.

3.4. Augmentation

Augmentation is the process of modifying training data in order
to generate similar but not identical samples, thereby increas-
ing the e↵ective number of samples. This therefore helps pre-
serve against over-fitting. We used three methods of augmen-
tation: White Gaussian noise was added to each light and cen-
troid curve, with the amount chosen randomly between 0 and
4 As provided by our google cloud education grant, https://cloud.
google.com/edu/
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• Significant work being done in this field 
using a range of techniques 

• Understanding instrument systematics are 
the main hindrance (pixel sensitivity 
variations as function of space craft orbit) 

• All data is publicly available and well 
documented

Example of transit data



Correcting time series data using probabilistic LSTMs
Interpolating transit LC with LSTMs 3

2.3. Recurrent Neural Networks (RNNs)

The main characteristic of Recurrent Neural Networks
is that they allow for recurrent connections2. If we con-
sider an input sequence {x1, x2...} of vectors, a recurrent
hidden layer will thus process it sequentially, receiving
at step t both the input xt as well as other previous hid-
den state(s) in order to compute the current state ht . A
typical example is shown on Figure 2, where the recur-
rence occurs between the hidden units of the same layer:
ht = ht(xt, ht�1). Compared to MLPs, RNNs allow us

Figure 2. An example of a recurrent neural network with
no output from (8).

to reduce the number of parameters of the network by
sharing weights between time-steps while seeking tem-
poral patterns in the data.
In practice, several more sophisticated recurrent ar-

chitectures are often more e↵ective than basic RNNs,
with namely the long short-term memory (LSTM) ((11))
architecture whose cell is shown in Figure 3. LSTM
networks have proven successful in a large range of ap-
plications including unconstrained handwriting recogni-
tion (9), speech recognition (10), machine translation
(19), to cite only a few. An LSTM cell, with its four
di↵erent gates and recurrent mechanisms, allows to ei-
ther retain or forget information from the past of the
input sequence, enabling the relevant long-term depen-
dencies to be picked up more easily. The main addition
in LSTMs compared to the basic RNNs has been to in-
troduce self-loops which are conditioned on the context
and controlled by the gates. Here are the detailed up-
date formulas for the four gates, the state and output
vectors composing each LSTM unit:

it = Wixxt +Wihht�1 + bi

jt = Wjxxt +Wjhht�1 + bj

ft = Wfxxt +Wfhht�1 + bf

ot = Woxxt +Wohht�1 + bo

ct = �(ft)� ct�1 + �(it)� tanh(jt)

2 This means that – unlike in feed-forward neural networks – in
RNNs the output of neurons from one layer can be used as input
for neurons of the same or a previous layer.

ht = �(ot)� tanh(ct)

Where t denotes the time step, Wab the matrix of
weights relative to the vectors a and b, ba the bias vector
relative to a, � the Hadamart product and � is the ac-
tivation function, typically a sigmoid or tanh function.
Incidentally, these types of gated RNNs also have the

advantage of being easier to train than basic RNNs, by
alleviating the well known vanishing or exploding gradi-
ent issue3(13).

Figure 3. An LSTM cell from (8), which replaces a usual
hidden unit (i.e. neuron) in a feed-forward neural network.
The input, forget and output gating units enable the cell to
accumulate or shut o↵ respectively the current input, long-
term dependencies and output through a sigmoidal activa-
tion function. The square here indicates a delay of one-time-
step, and operation symbols in the circles indicate the logic
operation involving the gates’ outputs.

3. METHOD

Here we describe the proposed method to interpolate
a time-series on a pre-defined prediction range. The
model is based on the deep auto-regressive neural net-
work model described in (17). It assumes that temporal
relations exist in the time-series and learns to predict the
next step in the training range of the input time-series.
It can also make use of additional data available for pre-

3 Neural networks are trained via gradient-based minimization of
a loss function. In each iteration of training, each parameter
of the model (weight) receives an update proportional to the
partial derivative of the loss w.r.t the current weight. Allowing
these gradients to grow vanishingly small or too large can cause
numerical instabilities, slow down training or stop it prematurely.

Interpolating transit LC with LSTMs 9

Figure 7. Raw data (blue) and model output, i.e. interpolated light curve in the absence of transit (red) for the light curves.
Dashed vertical lines indicate the initial prediction ranges.

Figure 8. (Top) Best Transit Fit (red curve) to the detrended light curve (blue points) normalized with respect to the stellar
flux. (Center) Fit residuals (blue points) along with the moving average (red curve) and standard deviation ( orange) of the
residuals. (Bottom) Auto-Correlated Function of the residuals

tc RP /RS (RP /RS)
2 i a/RS u

(BMJD-2454000) (%) (deg)

281.655330± 0.000046 0.15488± 0.00018 2.3988± 0.0056 85.771± 0.049 8.966± 0.044 0.146± 0.020

283.873934± 0.000050 0.15482± 0.00021 2.3969± 0.0066 85.800± 0.070 8.951± 0.062 0.100± 0.011

394.802828± 0.000045 0.15563± 0.00020 2.4221± 0.0063 85.610± 0.077 8.818± 0.060 0.101± 0.034

419.206968± 0.000063 0.15514± 0.00018 2.4067± 0.0057 85.849± 0.073 9.002± 0.072 0.130± 0.028

629.971783± 0.000087 0.15554± 0.00034 2.4193± 0.0105 85.890± 0.115 8.949± 0.099 0.199± 0.018

632.190497± 0.000047 0.15480± 0.00021 2.3962± 0.0064 85.619± 0.063 8.788± 0.064 0.103± 0.024

Table 3. Fitted physical parameters for each of the 6 transits.

The presented method is similar to the GP approaches
(cite) in that they are both highly non-linear mod-
els which avoid explicit models of the systematics and
provide probabilistic predictions. However, they di↵er

mainly in the fact that the systematics are corrected
independently of the subsequent transit fit for the inter-
polation approach. From that point of view, the neural
network model we propose could be replaced by other

• Exploits the spatial and time dependence 
of systematic noise  

• Nearly infinitely scalable to huge data sets 
such as Kepler or TESS (Gaussian 
Processes are restricted here) 

• Probabilistic time forecasting, i.e. accurate 
error bars

Morvan et al., AJ accepted, 

arXiv: 2001:03370 



Predicting additional planets in a system
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Figure 6. Cross-validation results from 10 different single-layer FF ANNs,
similar to Fig. 5 except we only show the fitted sigmoids. Using early
stopping, we identify that cross-validation performance does not improve
for U > 4 and thus identify this as our preferred ANN.

3.4 Early stopping

Properties of the FF ANN, in particular the number of hidden layers
and number of neurons, must be chosen. In general, one aims to use
the simplest ANN which can accurately relate the output pattern
to the input pattern, in order to avoid overfitting and for compu-
tational expedience. One popular method for choosing the ANN
architecture is known as early stopping, which we use in this work.
Essentially, the objective is to start from a simple model and build
up in complexity, stopping once the performance of cross-validation
no longer improves.

Here, we start with a single-layer U = 1 neuron FF ANN as our
simplest model, for which we find R0 = 1.56. The performance of
even this very simple ANN is impressive, yet notably lower than
the ∼1.7 value achieved with the single-layer U = 4 ANN shown
in Fig. 5. Increasing U up to 10, we find no improvement beyond
U = 4, which is evident from Fig. 6. Accordingly, we identify this
model as our preferred ANN, for which R0 = 1.69.

We repeated this exercise using a logistic sigmoid activation func-
tion instead of the rectified linear function and find nearly identical
results. We also tried using a dual-layer network, exploring a variety
of neuron combinations up to a maximum complexity of U1 = 6
and U2 = 6, but find R0 does not improve beyond ≃170 per cent.
As a final test, we trained a triple-layer network with U1 = 10,
U2 = 8 and U3 = 6, and similarly found R0 = 1.70. These results
imply that a single-layer U1 = 4 ANN is sufficient to capture the
predictive power of the selected features.

4 H Y B R I D A N N

4.1 Multiple inners sample

Of the full training set of 1786 systems, 307 (17 per cent) have
multiple transiting planets with P < Pcut. Whereas the ensemble
sample has a mean probability of hosting additional outers of 17.9 ±
0.9 per cent, this subset has a much higher probability of 33 ±
3 per cent (as also shown in the right-hand panel of Fig. 4). In
principle then, this multiplicity feature has a major influence on
the class probability. But, as explained in Section 3.2, whilst the
positive value of this feature could be obviously detected by TESS,
the negative value cannot be ruled out, since TESS’s sensitivity is
expected to be generally less sensitive to small planets than Kepler.

Nevertheless, if multiple inners are detected, the class probabil-
ity of outer transiters is enhanced and can be calculated with an
ANN. We therefore considered an additional ANN trained on three
features, where the first two are the same as before but the third is
the multiplicity flag, Minner.

4.2 Cross-validation

To cross-validate, we again emulate the practical way we envisage
our trained network being used. If a system is observed to have
just one inner, we will predict the class probabilities using the two-
feature ANN from before, thereby ignoring the inner multiplicity
feature. The logic here is that these systems may indeed have multi-
ple inners, we just do not know it due to TESS’s sensitivity bias, and
thus we train on the ensemble set. If a system is observed to have
multiple inners by TESS, then this would also be true as observed
in the training set derived from Kepler. Accordingly, for these in-
stances, we predict the class probability using an ANN trained using
the previously described three feature model.

Cross-validation is therefore identical to before except that the
output to the network (and equivalently for the class probabilities)
is now computed using

ŷ t = (1 − Minner)ŷ ANN2
t + Minner ŷ

ANN3
t , (9)

where Minner was defined earlier in equation (6), and the superscripts
ANN2 and ANN3 denote the two- and three-feature ANN, respec-
tively. We may now train ANN2 and ANN3 on a given training
set, then use equation (9) to predict the class probabilities on the
associated validation set.

In this way, we have constructed a hybrid of ANN2 and ANN3,
which can also be thought of as a single ANN with a second hidden
layer, comprising of ŷ ANN2

t and ŷ ANN3
t , and a first hidden layer

which has numerous synaptic strengths fixed to zero. The hybrid
ANN structure is depicted in Fig. 7.

4.3 Early stopping

As before, we use early stopping to identify the simplest possi-
ble ANN which maximally improves the yield of transit surveys,
described by parameter R0. However, rather than varying the archi-
tectures of both ANN2 and ANN3 simultaneously, we fix ANN2
to the U = 4 neuron preferred model found earlier and explore
single-layer, variable U architectures for ANN3.

As shown in Fig. 8, the cross-validation results do not improve
beyond U = 4 and thus we select the four neuron architecture as
the preferred structure. Unlike the two-feature ANN, the cross-
validation results display a steep change in R at f ∼ 0.17, except
for the case of U = 1 which again appears smooth. We model
the results using two logistic sigmoids, extending upon the single
logistic sigmoid used earlier in Section 3.3.

As mentioned at the start of Section 4.1, 17 per cent of the full
training set have Minner = 1. Further, as evident from Fig. 4, these
samples are nearly twice as likely to harbour additional transiting
outers. Therefore, the act of ranking the samples from highest to
lowest class probabilities and then selecting the best f = 0.2 quantile
essentially defines a sample dominated by Minner = 1 cases. The class
probability is high for these cases, but once we cross into f ! 0.2,
the top quantile starts to include Minner = 0 samples, which have
substantially lower class probabilities. This provides an explanation
for the steep changes observed in the cross-validation results of
Fig. 8.
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• Predicting the likelihood of extra planets existing in a system 

• Potentially increases transit detection efficiencies significantly

Kipping & Lam 2017
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Chapter 171 

3D Surface Plots 
Introduction 
Surface plots are diagrams of three-dimensional data. Rather than showing the individual data points, surface 
plots show a functional relationship between a designated dependent variable (Y), and two independent variables 
(X and Z). The plot is a companion plot to the contour plot. 

It is important to understand how these plots are constructed. A two-dimensional grid of X and Z is constructed. 
The range of this grid is equal to the range of the data. Next, a Y value is calculated for each grid point. This Y 
value is a weighted average of all data values that are “near” this grid point. (The number of points averaged is 
specified by the user.) The three-dimensional surface is constructed using these averaged values. Hence, the 
surface plot does not show the variation at each grid point. 

These plots are useful in regression analysis for viewing the relationship among a dependent and two independent 
variables. Remember that multiple regression assumes that this surface is a perfectly flat surface. Hence, the 
surface plot lets you visually determine if multiple regression is appropriate.  

   

     

Not a real exoplanet 
likelihood

Sampling is hard and time consuming 
Areas of interest

Do we need to sample here? 

Nested Sampling is currently the norm,  
Drawing “nests” of interest where 
sampling will be more pronounced. 

NS does sample the full likelihood and 
gets the Evidence. 

p(x) = ∫ p(x |θ)p(θ)dθ
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variables. Remember that multiple regression assumes that this surface is a perfectly flat surface. Hence, the 
surface plot lets you visually determine if multiple regression is appropriate.  

   

     

Not a real exoplanet 
likelihood

Sampling is hard and time consuming 

Learning the likelihood using neural 
nets can significantly speed up the 
sampling by being able to ‘predict’ 
where to go. 
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Figure 3. Spectra (left) and posteriors distribution (right) for a hot-Jupiter with a cloudy atmosphere (opaque cloud deck at
10�3 bar). Orange plots: the mass is known. Green plots: the mass is retrieved. The blue crosses indicate either the simulated
ARIEL observations (left plot) or the ground truth values (right plot).

Figure 4. Comparison between the known/retrieved mass cases as a function of cloud pressure. The clear-sky case is rendered
by placing the cloud deck at 10 bar.

We have deliberately selected H2, He and N2 in our simulations, so that the retrievals will not be guided by any
spectral features of these molecules. This choice represents the worst case scenario to assess the degeneracy between
the mass and the mean molecular weight. Atmospheres dominated by species such as H2O/CO2/etc, would have
traceable molecular features and would therefore represent a more favourable scenario for the inverse models. In this
section, we consider the four following cases:

• µ = 2.3 (N2/He = 0)

Producing the mapping between data and posterior
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Can we map from the data to the posteriors directly?  



Machine learning atmospheric retrievals

Figure 5: Left panel: Coe�cient of determination for each of the 5 parameters, as well as for the joint
prediction, versus the number of regression trees used in the random forest with an assumed noise floor of 50
ppm. Also included are the joint predictions for assumed noise floors of 10 and 100 ppm. Right panel: Same
as Figure 3, but comparing mock retrievals with assumed noise floors of 10 versus 100 ppm. The coe�cient
of determination (R2) varies from 0 to 1, where values near unity indicate strong correlations between the
predicted and real values of a given parameter.

Figure 6: True versus random-forest predicted values of the five parameters in our transmission spectrum
model. Left montage: H2O only, where the posterior distributions of HCN and NH3 are shown. Right
montage: HCN and NH3 only, where the posterior distribution of H2O is shown.

10

• Machine learning approach using random forests 

• Learns to repeat retrieval of a planet (e.g. WASP-12b) very fast

Márquez-Neila, Fisher, et al. 2018



Machine learning atmospheric retrievals

• Machine learning approach 
using Ensemble Neural Nets 

• Learns to repeat retrieval of a 
planet (e.g. WASP-12b) very 
fast

Cobb et al. 2019

An Ensemble of BNNs for Exoplanetary Atmospheric Retrieval 5

Concrete Dropout

Dense Layer 1

Concrete Dropout

Dense Layer 2

Concrete Dropout

Dense Layer 3

Concrete Dropout

Dense Layer 4

Spectra 

 

Atmospheric Parameters:

Network Outputs

Expectations over

Network samples

Figure 1. plan-net model procedure at test time for a
given spectrum Sn. T samples are taken from the BNN and
the expectations over the lower triangular matrix and the
mean are then used to parameterize the multivariate normal
distribution. ✓ can then be drawn from this distribution to
retrieve the atmospheric parameters. Each concrete dropout
layer consists of 1024 units.

as the squared loss and the heteroscedastic squared loss
(see Gal (2016, Chapter 4)), our new loss in Equation
(4) is able to model correlations between atmospheric
parameters. These inferred correlations lead to better
uncertainty estimates for the retrieved atmospheric pa-
rameters than the previous losses.
In addition to using the Adam optimizer, we employ

early stopping, with a patience of 30 epochs, accord-
ing to the validation loss. Furthermore, we use model
checkpointing to save the model that has the best per-
formance on the validation set.

3.3. Ensemble

It has been shown that an ensemble of neural networks
can o↵er more accurate estimations of the predictive
uncertainty than a single network (Lakshminarayanan
et al. 2017; Gal & Smith 2018). The additional benefit
is that an ensemble is more robust to changes in weight

initialization and the path taken during stochastic opti-
mization.
In this paper we use an ensemble of five plan-net

models and provide comparison to a single model. Five
models were chosen due to the empirical performance
in Table 1, as larger ensembles result in increasingly
marginal improvements.
The challenge in using an ensemble is in how the

outputs from the individual models are combined. In
our case, each output is the mean and covariance of
a multivariate normal distribution. Therefore in com-
bining these distributions together, we can treat the
overall output from the ensemble as a Gaussian mixture
model, whereby the each component weight corresponds
to 1/M , where M is the number of models in the ensem-
ble.
To calculate the expectation of this mixture model,

µens, we take the average of the individual component
means such that

µens =
1

M

MX

m=1

µm.

The variance of the mixture model ⌃ens can be calcu-
lated by employing the law of total variance:

⌃ens =
1

M

MX

m=1

(µm � µens)
2 +

1

M

MX

m=1

⌃m,

where the inferred covariance matrix of a single model is
given by ⌃m = ⇤�1

m = (LmL>
m)�1. This combines the

variance in the component means with the expectation
of the variance of the individual models, thus taking
into account how unsure each model is and how far each
model’s mean lies from the ensemble mean. Therefore
the atmospheric parameters retrieved via the ensemble
✓ens are distributed according to ✓ens ⇠ N (µens,⌃ens).

4. RESULTS AND DISCUSSION

Table 1 displays a comparison of R2 values across the
models, where R2 corresponds to the coe�cient of de-
termination

R2 = 1 �

PN
n=1

PD
d=1

⇣
✓(d)n � µ(d)

ens(sn)
⌘

PN
n=1

PD
d=1(✓

(d)
n � ✓̃(d))

(5)

as defined in the sklearn.metrics Python package,
where the summation is over both the size of the data
set N and the output dimension D. ✓̃(d) is the data
mean for each atmospheric parameter and the predic-
tion for each data point is given by µ(d)

ens(sn). This can
be viewed as a ratio between the residuals for the model
prediction and the total sum of squares. Values close to
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Figure 2. Retrieval analysis of the WFC3 transmission
spectrum of WASP-12b, where we compare the random for-
est with both a single plan-net and a plan-net ensemble.
The black cross denotes the mean over the samples, where
we report the results in Table 3. We note consistent results
across all models, and highlight the broader posteriors of the
ensemble when comparing to the single plan-net.

Table 1. Table reports R2 values for each atmospheric pa-
rameter. Values near 1 indicate high correlation between
model prediction and the known atmospheric parameters.
plan-net achieves a higher overall mean R2 as well as be-
ing higher for each individual parameter. Bold indicates the
best R2 value for each parameter.

T (K) logXH2O logXHCN logXNH3
0 Mean

PLAN-NET R2 0.770 0.623 0.487 0.721 0.750 0.673

Ens. 5 PLAN-NET R2 0.770 0.629 0.491 0.723 0.751 0.673

Our Ran. Forest R2 0.746 0.608 0.466 0.700 0.736 0.651

Ran. Foresta R2 0.746 0.608 0.467 0.700 0.737 0.652

aReported from Márquez-Neila et al. (2018).

1.0 are desirable as they are related to the correlation
coe�cient between the predicted and true atmospheric
parameters.
Therefore, the results in Table 1 show that both of

our models, the ensemble and the individual plan-net
model, outperform the random forest. Furthermore, we
note the slight performance boost that is gained from the
ensemble. In order to show that the results are repro-
ducible, we list both our implementation of the random
forest and their reported results, which closely agree.
In addition to reporting the R2 values, Table 2 con-

tains the average covariance matrix over the test data.
This table shows the average inferred correlations, where
the diagonal corresponds to the variance in each atmo-
spheric parameter and the o↵-diagonals indicate correla-
tions between the parameters. As this is the average cor-
relation matrix for all 20, 000 test planets, not too many
conclusions can be drawn from this matrix. However,
we note the average negative correlation that appears
between T (K) and 0 as well as T (K) and H2O. This is
consistent with intuition due to the known degeneracies
in the data. More specifically, as the observed spec-
tral features are caused by the temperature–pressure
profile and the molecular abundances, increasing either
whilst keeping all other parameters constant leads to
stronger spectral features. Consequently, a simultane-
ous increase in temperature and a decrease in molecular
abundances (or vice versa) could lead to the same ob-
served spectrum. Finally, an increase in cloud opacity
decreases the intensity of the observed spectral features
and could therefore look similar to a decrease in temper-
ature, hence the degeneracy and the expected negative
correlation between T (K) and 0.
By designing our model to learn these correlations, we

are able to interpret the results in a way that is not al-
ways available when using deep learning models. Specif-
ically, we identify cases where both our model and the
random forest approach do not recover the true values,
but where our model includes the true values in its wider
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Training set parameters

Variable A(0��) A(1��) A(2��)

CO 64.4% 74.9% 80.8%

CO2 93.7% 96.4% 97.3%

H2O 86.3% 92.9% 94.8%

CH4 80.3% 88.4% 91.9%

Rp 99.8% 99.8% 99.8%

Mp 88.8% 90.5% 91.6%

Tp 89.4% 91.9% 93.1%

Table 2. ExoGAN prediction accuracies associated to each
parameters for the training set. The A(0��) column repre-
sent the absolute accuracy of the prediction without taking
into account the error bar of the retrieval. The 2nd and 3rd

columns are taking into account the 1� and 2� retrieved
errors following equation 11.

Test set parameters

Variable A(0��) A(1��) A(2��)

CO 62.8% 72.6% 78.2%

CO2 94.2% 96.6% 97.4%

H2O 89.6% 92.8% 93.9%

CH4 80.3% 88.2% 91.6%

Rp 100.0% 100.0% 100.0%

Mp 88.0% 89.7% 90.8%

Tp 90.4% 92.2% 93.2%

Table 3. Same as table 2 but for the test set.

the retrieved value, �recon, and its corresponding error
��,

A(�,��) =
1

N

NX

i

(�i,recon � �i)2

�i
2 + �2

�i

(11)

whereN is the number of reconstructed ASPA instances.
We compute the reconstruction accuracies for 1000

randomly selected planets for each, the test and train-
ing sets. The accuracies are summarised in tables 2 &
3 for 0� (an exact match), 1� and 2� confidence in-
tervals. Figure 8 shows an example of the parameter
distributions retrieved for a test-case planet.

4.1. Comparison with a classical retrieval model

In this section we compare the ExoGAN results with
a ‘classical’ retrieval result obtained with the TauREx
retrieval code. For this comparison and tests in sub-
sequent sections, we used as example the hot-Jupiter
HD189733b with planetary/orbital parameters taken
from Torres et al. (2008); Butler et al. (2006) and at-
mospheric chemistry based on Venot et al. (2012), see
table 4.

Test planet parameters

Parameter Value

R⇤ 0.752R�

Rp 1.151RJ

Mp 1.150MJ

Tp 1117K

H2O 3 · 10�4

CO 4 · 10�4

CO2 2 · 10�7

CH4 5 · 10�6

Table 4. Test-case atmospheric and planetary parameters
used based on HD189733b. The molecular abundances are
given in volume mixing ratios.

We now retrieve the forward model parameters for
both TauREx and ExoGAN for spectra across the Hub-
ble/WFC3 only band and a large (0.3 - 15µm) wave-
length band. Here the Hubble/WFC3 spectrum was
taken from Tsiaras et al. (2018) and interpolated to
the ExoGAN resolution using a quadratic interpolation
(figure 9). The large wavelength range spectrum is syn-
thetic, based on table 4.
In figure 10 we compare both sets of results. The Hub-

ble/WFC3 and large wavelength retrievals are shown
with square and circular markers respectively. In both
cases, the ExoGAN predictions are consistent with the
TauREx retrievals within the error bars. We note that
in the case of CO in the Hubble/WFC3 data, neither
TauREx nor ExoGAN feature detections as expected.
Comparisons of run-time are remarkable. Using the

TauREx Retrieval code with 7 free parameters a stan-
dard nested-sampling analysis takes ⇠ 10 hours on 24
CPU cores using absorption cross-sections at a resolu-
tion of R = 15,000 and spanning a large (0.3 - 15µm)
wavelength range. The trained ExoGAN requires ⇠ 2
minutes for the same analysis. This constitutes a speed
up of ⇠ 300 times and is independent of the number of
free parameters.

5. ROBUSTNESS TESTS

In order to test the limits of ExoGAN we simulate
three conditions previously encountered by the network.
We use the same example planet as in the previous sec-
tion (table 4) and simulate the following three scenarios
unseen by ExoGAN during training phase:

• the presence of clouds;

• the addition of a trace gas unknown to the net-
work;

• atmospheric temperatures outside the training
range.

Spectral reconstruction
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