Exploring the ARIEL Capabilities to Constrain Exoplanet Atmospheres

Patricio E. Cubillos
Space Research Institute (IWF), Austrian Academy of Sciences

ARIEL Science, Mission & Community 2020 conference
16.01.2019
Transiting Exoplanet Characterization
Atmospheric Retrieval Framework

Python Radiative Transfer in a Bayesian framework: (Cubillos & Blecic, in prep.)

Forward modeling
- $T(p)$
- $\text{comp}(T,p)$
- spectra(λ)
- opacity
- mcmc

Atmospheric modeling
- Radiative transfer
- MCMC

Follow best-coding practices
(e.g., PEP 8, PEP 20, PEP 257)

Used in retrieval comparison:
Kilpatrick et al. (2019), Venot et al. (2020).

Code 62%
Documentation 21%
Testing 17%

Follow best-coding practices (e.g., PEP 8, PEP 20, PEP 257)

Read the Docs

pytest Travis CI
Validation (1)

Compare against ExoMol/TauREx opacities (Chubb et al, in prep)
Validation (2)

Compare against petitDARTRANS spectra (Molliere et al, 2019)
https://petitradtrans.rtfd.io/

Transmission spectra

Emission spectra
The HST/WFC3 Transmission Sample (Cubillos & Blecic, in prep.)
Degenerate/multi-modal Posterioris

HAT-P-41b

(best-fit model, data)
- **Cloudy mode**: H2O correlates with cloud top pressure
- **Cloudy mode**: H2O correlates with cloud top pressure
- **High-µ mode**: H2O in high mean-molecular-mass atmosphere
Degenerate/multi-modal Posteriors
Degenerate/multi-modal Posteriors

\[\mathcal{T} \sim 1 \text{ (optically thin)} \]

\[\mathcal{T} \sim 0 \text{ (optically thick)} \]
Degenerate/multi-modal Posteriors

WFC3 band

<table>
<thead>
<tr>
<th>Pressure (bar)</th>
<th>Transmittance</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^-6</td>
<td>0.0</td>
</tr>
<tr>
<td>10^-5</td>
<td>0.0</td>
</tr>
<tr>
<td>10^-4</td>
<td>0.0</td>
</tr>
<tr>
<td>10^-3</td>
<td>0.0</td>
</tr>
<tr>
<td>10^-2</td>
<td>0.0</td>
</tr>
<tr>
<td>10^-1</td>
<td>0.0</td>
</tr>
<tr>
<td>10^0</td>
<td>0.0</td>
</tr>
<tr>
<td>10^1</td>
<td>0.0</td>
</tr>
<tr>
<td>10^2</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Wavelength (µm) | 0.6 | 1.0 | 2.0 | 3.0 | 4.0 | 5.0 | 8.0
Transmittance | 0.38 | 0.39 | 0.40 | 0.41 | 0.42 | 0.43 | 0.44

best-fit model
data
Degenerate/multi-modal Posteriors

WFC3 band

WFC3 probes narrow pressure range
(isothermal/isobaric OK-ish)
Degenerate/multi-modal Posteriors

ARIEL: wide simultaneous coverage

WFC3 probes narrow pressure range (isothermal/isobaric OK-ish)
WFC3 probes narrow pressure range (isothermal/isobaric OK-ish)

ARIEL will probe much wider pressure range!

ARIEL: wide simultaneous coverage

Degenerate/multi-modal Posteriors
The Challenge

We wish to increase complexity:
- Non-isothermal profiles
- Non-isobaric abundances (Changeat et al., 2019)
- > 1D geometry (Taylor et al.; Irwin et al., 2019)
- Complex clouds (Blecic et al., in prep)

But, restrained by data quality:
- Unwieldy parameter space
- Unconstrained posteriors
- Modeling choices impact outcome
 physics
data bases
 what to include/exclude

Restrained by CPU power
GPU no longer (e.g., Al-Refaie, Zalesky, Malik)

Increase complexity,
be aware of assumptions,
keep results insightful
The Precision of Mass Measurements Required for Robust Atmospheric Characterization of Transiting Exoplanets

Natasha E. Batalha1, a, Taylor Lewis1, Jonathan J. Fortney1, a, Natalie M. Batalha1, a, Eliza Kempton2, b, Nikole K. Lewis3, c, Michael R. Line4, c
Mass-retrieval Setup

Same assumptions as retrieval challenge:
- Isothermal profile
- Isobaric abundances (H2O, CO, CO2, CH4, TiO)
- Radius at 10 bar
- Gray cloud deck

Additionally:
- Retrieve planetary mass, assuming Gaussian priors
- Test multiple mass-uncertainties

What’s the impact on the abundance posteriors?
ARIEL Mass-retrieval Setup

Hydrostatic equilibrium:

\[\frac{dr}{r^2} = - \frac{kT}{\mu GM_p} \frac{dp}{p} \]

Hill Radius:

\[R_H = a \sqrt[3]{\frac{M_P}{3M_s}} \]
Hydrostatic equilibrium:
\[
\frac{d r}{r^2} = - \frac{k T}{\mu G M_P} \frac{d p}{p}
\]

Hill Radius:
\[
R_H = a \sqrt[3]{\frac{M_P}{3M_s}}
\]
Hydrostatic equilibrium:
\[
\frac{dr}{r^2} = -\frac{kT}{\mu GM_p} \frac{dp}{p}
\]

Hill Radius:
\[
R_H = a \sqrt[3]{\frac{M_p}{3 M_s}}
\]

ARIEL Mass-retrieval Setup
Hot Jupiter (0.7 M_{Jup})

$\sigma_M = 0$

$\sigma_M/M_p = 1\%$

$\sigma_M/M_p = 5\%$

$\sigma_M/M_p = 10\%$
Mini-Neptune 1 \((20~M_{\text{Earth}}) \)

\[
\sigma_M = 0
\]

\[
\sigma_M/M_p=5\%
\]

\[
\sigma_M/M_p=10\%
\]

\[
\sigma_M/M_p=40\%
\]
Mini-Neptune 2 (3.2 \(M_{\text{Earth}} \))

\[\sigma_M = 0 \]

\[\sigma_M/M_p=10\% \]

\[\sigma_M/M_p=40\% \]

\[\sigma_M/M_p=80\% \]
Conclusions

The broader simultaneous spectral coverage of ARIEL will let us aim for an increased model/retrieval complexity.

Mass uncertainties might not have a large impact in abundance retrievals of H/He planets.

There’s a long list of improvements for retrieval (2D/3D, consistent equilibrium/disequilibrium chemistry, advanced cloud schemes, etc).

We must be aware of assumptions. Open-source code will help to understand impact.