Exploring the ARIEL Capabilities to Constrain Exoplanet Atmospheres

Patricio E. Cubillos

Space Research Institute (IWF), Austrian Academy of Sciences

ARIEL Science, Mission & Community 2020 conference 16.01.2019

Atmospheric Retrieval Framework

Python Radiative Transfer in a Bayesian framework: (Cubillos & Blecic, in prep.)

ÖAW (IWF Validation (2)

Compare against petitDARTRANS spectra (Molliere et al, 2019)

https://petitradtrans.rtfd.io/

Institut für Weltraumforschung ÖAW (İWF **Degenerate/multi-modal Posteriors** 1.0 R planet (R)up) 1.60 1.55 HAT-P-41b ^oosterior density 0.8 1.08 best-fit model data 1.07 0.5 1.06 log₁₀(*f*_{H20}) -2.5 -5.0 0.2 -2.5 (%) 1.05 2(⁸/⁴) 1.03 0.0 8 1.02 6 μ 1.01 4 1.00 2 1.2 1.4 1.6 1.8 Wavelength (um) $\log_{10}(p_{top})$ 0 - Cloudy mode: H2O correlates with cloud top pressure - High-µ mode: H2O in high mean-molecular-7.5 -2000-1000 1.60 5.0 1.65 -5.0 -2.5 2.5 1.55 mass atmosphere μ

 R_{planet} (R_{Jup})

 $\log_{10}(f_{H2O})$

T (K)

The Challenge

We wish to increase complexity:

- Non-isothermal profiles
- Non-isobaric abundances (Changeat et al., 2019)
- > 1D geometry (Taylor et al.; Irwin et al., 2019)
- Complex clouds (Blecic et al., in prep)

But, restrained by data quality:

- Unwieldy parameter space
- Unconstrained posteriors
- Modeling choices impact outcome physics
 - data bases
 - what to include/exclude

Restrained by CPU power

GPU no longer (e.g., Al-Refaie, Zalesky, Malik)

Increase complexity, be aware of assumptions, keep results insightful

Natasha E. Batalha¹⁽ⁱ⁾, Taylor Lewis¹, Jonathan J. Fortney¹⁽ⁱ⁾, Natalie M. Batalha¹⁽ⁱ⁾, Eliza Kempton²⁽ⁱ⁾, Nikole K. Lewis³⁽ⁱ⁾, Michael R. Line⁴⁽ⁱ⁾

Mass-retrieval Setup

What's the impact on the *abundance* posteriors?

Conclusions

The broader simultaneous spectral coverage of ARIEL will let us aim for an increased model/retrieval complexity.

Mass uncertainties might not have a large impact in abundance retrievals of H/He planets.

There's a long list of improvements for retrieval (2D/3D, consistent equilibrium/disequilibrium chemistry, advanced cloud schemes, etc).

We must be aware of assumptions. Open-source code will help to understand impact.

ÖAW (İWF