
Observability of temperate exoplanets with ARIEL T. Encrenaz¹, G. Tinetti², A. Coustenis¹ and M. Ollivier³

¹ LESIA, Paris Observatory, France ² University College London, UK ³ IAS, Orsay, France

Abstract

- The first objective of the ARIEL mission is to characterize all kinds of exoplanets with a temperature higher than 500 K.
- In this study, we address the following question: under which conditions could a temperate exoplanet, with equilibrium temperatures of 350-500 K, be detectable with ARIEL ?
- We first consider a temperate Jupiter. Its infrared transmission spectrum of a temperate Jupiter is calculated, and its expected amplitude signal through a primary transit is estimated for several classes of stars.
- Calculations show that temperate Jupiters around M stars could have an amplitude signal higher than 10⁻⁴ in primary transits, with revolution periods of a few tens of days and transit durations of a few hours.
- In order to enlarge the sampling of exoplanets to be observed with ARIEL, such
 objects could be considered as additional possible targets for the mission.
- In a next step, we will consider the conditions of observability for temperate super-Earths (ex: TRAPPIST-1 b)
- This study is a follow-up of "Transit spectroscopy of temperate Jupiters with ARIEL: A feasibility study" (Exp. Astr. 46:31-44, 2018)

A typical transmission spectrum for a temperate Jupiter

Table 2

Estimated semi-major axis (D), rotational period (P), amplitude of primary transit signal (A) and transit time (t) for a Jovian-like exoplanet transiting around a star of spectral type between G2 and M8, with an albedo a = 0.03, assuming either a fast rotator (columns 6 and 8) or a tidally locked object (columns 7 and 9). Two cases are considered: $T_P = 350$ K and $T_P = 500$ K. The fast rotator case is favoured for G2 to M0 stars (M0 stars are actually an intermediate case); the tidally locked object case is favoured for M5 and M8 stars.

1	2	3	4	5	6	7	8	9	10	11
Spectral type	R	M	L	T*	D	D	P(d)	P(d)	A	Transit
	(Rs)	(Ms)	(Ls)	(K)	(AU)	(AU)	fast	slow		time
					fast	slow	rot.	rot.		(h)
					rot.	rot.				
G2 (T _P = 350 K)	1.0	1.0	1.0	5770	0.625	0.880	180	301	6.78 10-5	10.3
G2 (T _P = 500 K)					0.306	0.431	61	103	9.69 10-5	7.1
G5 (T _P = 350 K)	0.93	0.93	0.79	5641	0.561	0.790	159	266	7.84 10-5	9.4
G5 (T _P = 500 K)					0.274	0.386	54	91	1.12 10-4	6.6
K0 (T _P = 350 K)	0.85	0.78	0.40	4977	0.431	0.607	117	195	9.38 10-5	8.3
K0 (T _P = 500 K)					0.211	0.297	40	67	1.34 10-4	5.8
K5 (T _P = 350 K)	0.74	0.69	0.16	4242	0.358	0.504	94	157	1.24 10-4	7.0
K5 (T _P = 500 K)					0.175	0.246	32	54	1.77 10-4	4.9
M0(T _P = 350 K)	0.63	0.47	0.063	3642	0.201	0.282	48	80	1.71 10-4	5.4
M0(T _P = 500 K)					0.099	0.139	17	28	2.44 10-4	3.9
M5(T _P = 350 K)	0.32	0.21	0.008	3041	0.06	0.08	12	18	6.64 10-4	2.6
M5(T _P = 500 K)					0.03	0.04	4	6	9.50 10-4	1.7
M8(T _P = 350 K)	0.13	0.10	0.001	2691	0.02	0.03	3	6	3.98 10 ⁻³	1.0
M8(T _P = 500 K)					0.01	0.015	1	2	5.70 10-3	0.6

Sensitivity study

We use as a calibrator the exoplanet WASP-76 b (0.92 M_J, 1.83 R_J, Te = 2200 K, d = 0.033 AU, period = 1.81 d, A = 10⁻³, t = 3.4 h. A summation of 25 transits (corresponding to 85 hours of total observing time) is needed to achieve a S/N of about 10 for the nominal ARIEL spectral resolution (100 @ 2-4 μ m, 30 @ 4-8 μ m).

Table 3

(1) Estimated S/N in 100h of integrating time; (2) number of transits required to obtain 100 hours of integration time on a temperate Jupiter (T = 400 K); (3) total time required to accumulate these transits; (4) Estimated distance of the star for $\Phi^{(*)}=\Phi(WASP-76)$.

				(1)				(2) Nb of transits	(3) Total time needed for tint = 100 h (days/year)	Distance for F(*) = F(WASP- 76)(pc)
Etoile	Т* (К)	R* (Rsol)	A	S/N in 100 hours	a (AU)	Period (day)	t(h)			
WASP- 76	6250	1.73	1 (-3)	12	0.03	1.81	3.4	30	54/0.15	120
G2	5770	1.00	0.8(-4)	1.0	0.47	118	9.0	11	1298/3.56	111
G5	5641	0.93	0.9(-4)	1.1	0.43	110	8.5	12	1320/3.61	100
КО	4977	0.85	1.2(-4)	1.4	0.33	88	8.1	13	1144/3.13	80
K5	4242	0.74	1.3(-4)	1.6	0.27	74	7.3	14	1036/2.84	50
MD	3642	0.63	2.0(-4)	2.4	0.15	45	6.8	15	675/1.85	45
M5	3041	0.32	7.0(-4)	8.4	0.06	25	4.8	21	525/1.44	17
M8	2691	0.13	4.8(-3)	58	0.02	10	2.3	44	440/1.20	7

It can be seen that all classes of objects can be considered within a lifetime of 3 years; however, temperate Jupiters around MS to M8 dwarfs should be favoured for a higher S/N ratio and a shorter required time of observation. Degrading the spectral resolution will be needed to increase the S/N for M0 stars and to enlarge the distance of observable MS and M8 stars.