

SPIRou meets ARIEL

F. Debras, C. Moutou, JF. Donati, B. Klein, P. Petit and the SPIRou team[†]

IRAP, Toulouse, France

HOW TO COMBINE SPIRou & ARIEL?

1. HIGH RESOLUTION ATMOSPHERIC CHARACTERIZATION

♦ SPIRou is optimal for transmission spectroscopy: large nIR domain, high spectral resolution, dry Earth atmosphere, service observing

Atmosphere composition and winds: the combination of SPIRou and ARIEL would resolve model degeneracies (Brogi & Line 2019) ♦ Simultaneous Rossiter-McLaughlin anomaly can be measured to get planet obliquities

2. STELLAR ACTIVITY FILTERING

♦ SPIRou measures the circular polarization in stellar lines, producing series of Stokes V profiles (Donati et al. 97) => reconstruction of the magnetic large-scale topology of the stellar surface and distribution of brightness features

 \diamond Observing in the nIR domain offers the possibility to estimate the

of the main SPIRou sub-systems: (1) the Cassegrain unit (2) the spectrograph enclosed in its cryostat; (3) the Calibration module.

Spectral range: 0.96 – 2.48 μ m in a single exposure, no gaps, **YJH and K bands** 49 orders

 \Rightarrow Planet's rotation period can be derived (Snellen et al 2014)

♦ Phase curves and eclipse observations: temperature, albedo, atmospheric circulation

IN PREPARATION AND IN COMPLEMENT TO ARIEL, SPIROU IS ABLE TO ENLARGE **SIGNIFICANTLY OUR KNOWLEDGE OF** PLANETARY ATMOSPHERES

Example: cross correlation of high resolution simulated spectrum of HD 189733b with water lines **Expected 4 sigma detection of water**

small-scale magnetic field concentrated in spots as well

♦ Magnetic field characterization is critical to evaluate stellar « noise »: select best targets for ARIEL, observe simultaneously to correct for stellar variability (Zhang et al 2018)

 \diamond Observations in spectropolarimetry should be simultaneous to planetary characterization measurement for a proper modelling (Fares et al. 2018)

♦ Star-planet interactions can be estimated, and planetary magnetic field (Cauley et al. 2019) - which can be critical for habitability (Vidotto et al. 2013)

POLARIMETRIC OBSERVATIONS WOULD GREATLY IMPROVE THE ATMOSPHERIC CHARACTERIZATION FROM ARIEL AND HELP SELECT BEST TARGETS

> Example: magnetic topologies of planet hosting stars

Example of a reduced blaze-corrected Stokes I spectrum obtained for HD189733 in

September 2018. The beginning of each diffraction order is indicated through a magenta vertical dotted line and the Y, J, H and K bands are shown as the horizontal dashed lines on the top. The green vertical bands indicate the spectral ranges dominated by tellurics

> Spectral resolution: 70±5K Radial velocity precision: 2 m.s⁻¹

Radial velocity curve of GI436 obtained with SPIRou, confirming the presence of the planet GI436b. Residuals of 2.5 m/s

CONCLUSIONS

 \diamond High resolution spectropolarimeter installed at CFHT \diamond Current radial velocity precision : 2m/s

Combination with ARIEL :

 \diamond Higher resolution spectrum in the near infrared ♦ Possibility to filter out stellar activity

Complement :

of GJ 358 Hebrard et al. 2016

Further information: claire.moutou@irap.omp.eu

Pictures Copyright: ©S. Chastanet – CNRS/OMP [†]SPIRou is an international project led by France (IRAP/OMP) and involving the CFHT,

ACKNOWLEDGEMENTS

The SPIRou team thanks all funding agencies in France (the IDEX initiatives in Toulouse and Marseille, DIM-ACAV

Canada, Switzerland, Brazil, Taiwan and Portugal. The SPIRou science consortium gathers over 100 scientists from more than 30 research institutes in 11 different countries.

Z

σ