

Hera Flyby Target - Selection of candidates

Petr Pravec¹ and Simon Green²

¹Astronomical Institute AS CR, Ondřejov, Czech Republic ²Open University, UK

Hera workshop, Berlin, 2018 November 15-16

Hera flyby opportunities

- Hera passes close to asteroids in each mission scenario
- Number with $H_V < 20$ (200 m < D < 600 m):

<u>Mission</u>	<u><0.05 AU</u>	<u><0.01 AU</u>
ema2024	570	21
ea2024	621	30
ea2025	70	2
eea2025	574	24

Need to establish criteria for selection of best candidates for Hera flyby based primarily on scientific interest

Hera flyby target selection criteria

1: Binary asteroid

- Allows comparison of binaries.
- Identification of common and different characterictics.
- Potential insight into formation and evolution of binaries.

2: Non-S type asteroid

Greater taxonomic diversity.
 (S-types most abundant among spacecraft encounters to date).

3: Fresh surface

- Insight into space weathering.
- Q = unweathered S type. Relation unknown for other classes.
- Active, paired or clustered asteroids may have exposed unweathered surfaces.

Need candidates with known properties, or have opportunity to make observations to determine them before Hera flies.

Binary and Binary/pair

Pravec et al., Binary asteroi population. 3. Secondary rotations and elongations. Icarus 267, 267-295, 2016 Pravec et al., Asteroid pairs, a complex picture. *in prep.* Scheirich et al., Astmmetric distribution of orbital poles of binary asteroids. *In prep.*

Binary and Binary/pair

Pravec et al., Binary asteroi population. 3. Secondary rotations and elongations. Icarus 267, 267-295, 2016 Pravec et al., Asteroid pairs, a complex picture. *in prep*. Scheirich et al., Astmmetric distribution of orbital poles of binary asteroids. *In prep*.

Observing opportunities

- Sevastopol, Nischaykumar and Didymos observable in 2019
- VLT/NTT proposal submitted for rotationally resolved spectra
- Search for mobility of surface materials

2121 Sevastopol

- April 2019 V ~ 15
- Mutual eclipses/occultations
- $D_s/D_p = 0.41$ allows rotationally resolved spectra of primary *and* secondary

25021 Nischaykumar

- April 2019 V ~ 20
- Rotationally resolved spectra of primary

Search for ideal Hera flyby target

- ~15% of small (*D* <~10 km) asteroids are binary
- Binary detection efficiency of photometric technique ~ 30-40% (Pravec et al. 2006, 2012),

 \rightarrow one binary asteroid detection per ~20 surveyed asteroids.

- Survey among Hera flyby candidates for targets satisfying both criteria 1 and 2:
 - a: Spectral survey for non-S type asteroids
 - b: Photometric survey for binaries among identified non-S types.