

HELENA – HERA LIDAR ENGINEERING MODEL ALTIMETER

Paulo Gordo – FCUL & Armilar (Omnidea group)

2018-11-15

ESA UNCLASSIFIED - For Official Use

▃▝▋ゝ▙▃ः ः ▋゠゠゠゠▋▋゠゠゠ぉ゠゙゙゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚

Introduction

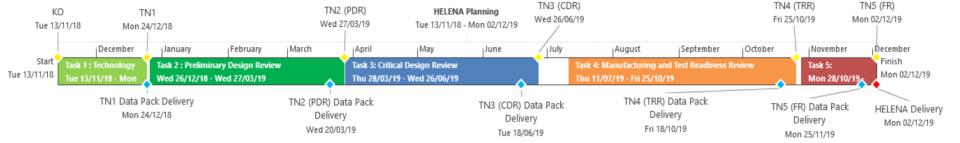
- Content:
- Development LIDAR Team
- HELENA timeline
- ABPA LIDAR (i.e. Previous lidar)
- HELENA requirements
- HELENA power budget

ESA UNCLASSIFIED - For Official Use

Paulo Gordo | 15/11/2018 | Slide 2

+

- Current LIDAR team (for ENGINEERING MODEL OF A LASER ALTIMETER FOR THE AIM activity):
- EFACEC (prime) Arlindo Marques (Portugal and Romania)
 - Space electronics, mechanical design, full system integration
- FCUL & OMNIDEA Paulo Gordo


(Portugal - Faculty of Sciences University of Lisbon)

- Optic design, opto-mechanics and optical system MAIT
- INOE Doina Nicolae

(Romania - National Institute of Research and Development for Optoelectronics)

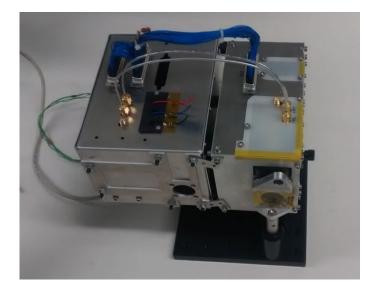
- Optic design, LIDAR simulation
- ESA TO Georgios Tzeremes

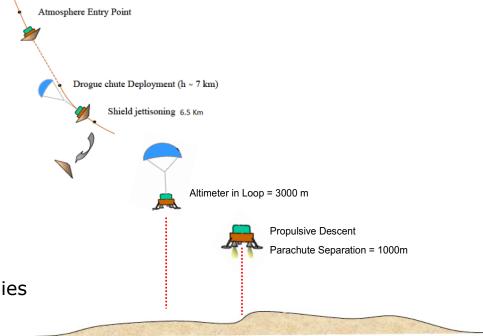
ESA UNCLASSIFIED - For Official Use

ESA UNCLASSIFIED - For Official Use

Paulo Gordo | 15/11/2018 | Slide 4

+


European Space Agency



HELENA planning

ABPA LIDAR

- Developed for Landing in celestial bodies
- Compact, low power
- Lidar and / or Radar frontend
- 2 protocols (SpW and/or CAN Bus...)

ESA UNCLASSIFIED - For Official Use

Paulo Gordo | 15/11/2018 | Slide 5

ABPA LIDAR - Performance

Parameter	Requirement	Remarks	RADAR Altimeter Unit Results	LIDAR Altimeter Unit Results
Operational envelope for altitude [km]	3km down to 0.01km	altimeter shall supply data to the	Max:2,2km Min 10m	Max: 810m Min:18m Maximum distance limited by test campaign.
Maximum G-load [m/s2]	40g	To survive the Earth launch and the Mars entry and parachute deployment	On breadboard, 8g	On breadboard, 8g
Maximum Mass [kg]	1kg	Including electronic box and required antennas or telescope	1,7kg (with antennas)	0,585 kg (unit box only)
Maximum Dimensions of the electronic box on height, length and width [cm, cm, cm]	10cm x 10cm x 15cm		12,0cm x 15,0cm x 10,0cm	12,0cm x 15,0cm x 10,0cm
Maximum Power Consumption [W]	5W	For the entire assembly (8W worst case)	5,6W	8,6W
Maximum supply voltage	Nominal: 28V	Compatible with the typical Descent Module architecture	Nominal: 28V	Nominal: 28V
	Peak: 36V		Peak: 36V	Peak: 36V

Electronics box +LIDAR unit - 1,4kg with margin (1,19kg without)

ESA UNCLASSIFIED - For Official Use

Paulo Gordo | 15/11/2018 | Slide 6

+

HELENA requirements

Requirement	HELENA	Problem & Solution approach
<u>Range</u>	–20 Km 200m	 ABPA design range was 3Km to 0.01Km Increase optical aperture Increase APD Sensor Gain Cooled APDs receivers with TIA additional circuit with APD receiver working in Geiger mode
Operational Wavelength	1.5um	- LIDAR LASER source is a 1.5um microchip laser
FOV	< 3 degrees	- Design FOV is 0.5 degree
Measure rate	10Hz	
Operational temperature	-40 to 70	- ABPA was -40oC to 60oC - Design issue to be consider
Data Handling Interfaces	Compatible with both Space Wire and CAN-Bus.	- It is foreseen around 3 kbit/s
<u>Accuracy</u>	0.5 m (goal 0.1m)	 0.1 m is challenging - 0.67ns TOF error 0.5 m is comfortable - 3.34 ns TOF error ABPA requirement was 1% (2 m at 200m) Radar accuracy was 1,68% Vvery limited testing in Laboratory: ABPA LIDAR accuracy at 75m is 4,6% (3 m) ABPA LIDAR accuracy at 810m is 8%
NCLASSIFIED - For Official Lise		Paulo Gordo 15/11/2018

ESA UNCLASSIFIED - For Official Use

Paulo Gordo | 15/11/2018 | Slide 7

· = ■ ► = = + ■ = ≔ = 1 ■ ■ = = = ■ ■ ■ ■ = = = ■ ₩ · = |•|

HELENA power budget

$E_r = E_{tr} \tau_r \frac{A_r}{R_m^2}$	$\frac{r_s}{\pi} \tau_a^2$ [J]
---	--------------------------------

Er - pulse energy (J), Etr - transmitted pulse energy (J) τr - receiver optics

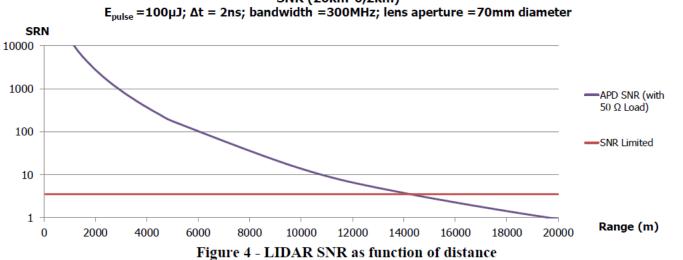
transmission

Ar - receiver telescope

aperture area

- rs target surface reflectivity (assuming Lambertian)
- τa atmosphere transmission

		System parameters		
	Symbol	Value	Description	
[Elaser	100 µJ	Laser pulse energy (TBD)	
, [∆t	2 ns	Pulse width (TBD)	
	E _{tr}	90 µJ	Transmitted laser pulse energy (after optics)	
[Tt	9,03 ⁻⁰¹	Emitted optics transmission	
[Tr	9,40 ⁻⁰¹	Receiver optics transmission	
	A _r	(diameter 50mm to 150 mm)	Receiver telescope entrance aperture area. Parameter to be explored	
[r _s	0,1	Asteroid surface diffusive reflectivity	
[Ta	1	No atmosphere	
[Р		Peak power of receiver signal	
	λ	1535 nm	Laser wavelength (TBD)	
[I _d	50 nA	APD dark Current	
	η	0,75	APD quantum efficiency at 1550 nm	
[Κ _{eff}	0,6	APD ionization coefficient ratio	
	R _{APD}	25	APD responsivity (considering an M=25)	


ESA UNCLASSIFIED - For Official Use

Paulo Gordo | 15/11/2018 | Slide 8

*

HELENA power budget

SNR (20km-0,2km)

ESA UNCLASSIFIED - For Official Use

Paulo Gordo | 15/11/2018 | Slide 9

+

+

hh you

ESA UNCLASSIFIED - For Official Use

Paulo Gordo | 15/11/2018 | Slide 10

+

###