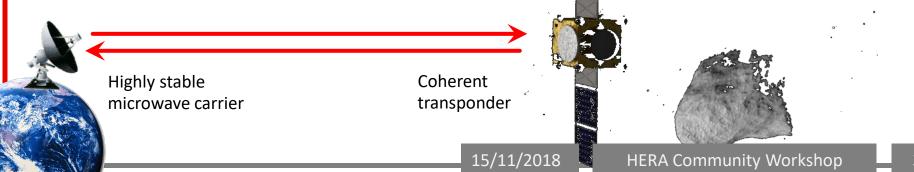
Radio Science Investigations at Didymos

HERA Community Workshop Berlin, 15-16 November 2018

Paolo Tortora¹, Alain Herique²

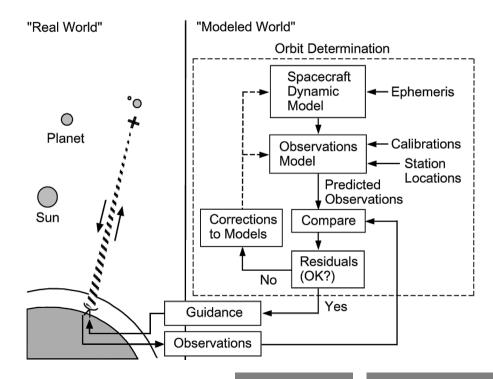

¹ University of Bologna, Italy
² Université Grenoble Alpes, France

- HERA Radio Science Experiment
- Science Objectives
- Radio
- Radio Science Experiment numerical simulations
 - HERA Trajectory Assumptions
 - S/C Simulated Tracking Timeline
- Radio Science Results
 - HERA S/C tracked from Earth
 - HERA S/C tracked from Earth + 1 Cubesat tracked from HERA
- Conclusions

Summary

HERA Radio Science: Concept

- Radio science experiments on space missions exploit the information carried by radio link between the S/C and the Earth to infer data of scientific interest.
- Measured quantities: properties of received signal like frequency, phase, amplitude, polarization.
- Gravity science experiments:
 - Application of the orbit determination techniques
 - Purpose: estimate a set of parameters which fully define the trajectory of the spacecraft and the dynamical environment
 - Hardware required: coherent transponder (not necessarily dedicated to science)

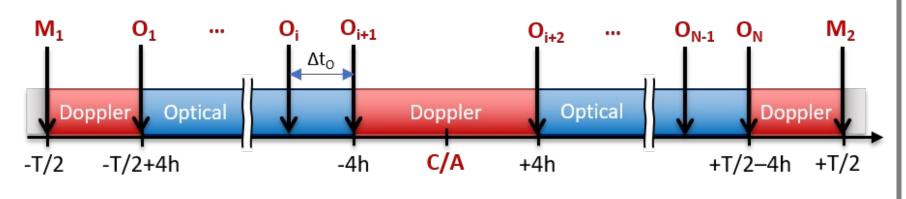


HERA Radio Science: Science Objectives

Measurements	Estimated Parameters	Science objectives
Range tracking	Didymos barycenter	Improved heliocentric orbit.
	ephemerides in the Solar	Refinement of models of the non-
	System	gravitational accelerations acting
		on small bodies (Yarkovsky effect).
Doppler tracking and	Didymoon ephemerides	Improved Didymoon orbit.
optical observables	relative to Didymain	Dissipation and tidal evolution of
		asteroid binary system. Balance
		between tides and YORP effect.
Doppler tracking	GM	Bulk density.
Combine with shape derived from camera.	Degree 2 gravity	Moments of inertia.
	Higher degree gravity	Gravity anomalies and density
		distribution.
Doppler tracking and optical observables	Pole orientation	Moments of inertia.
	Rotational dynamics	YORP effect.
		Coupling between orbital and
		rotational dynamics.
	15/11/202	18 HERA Community Workshop

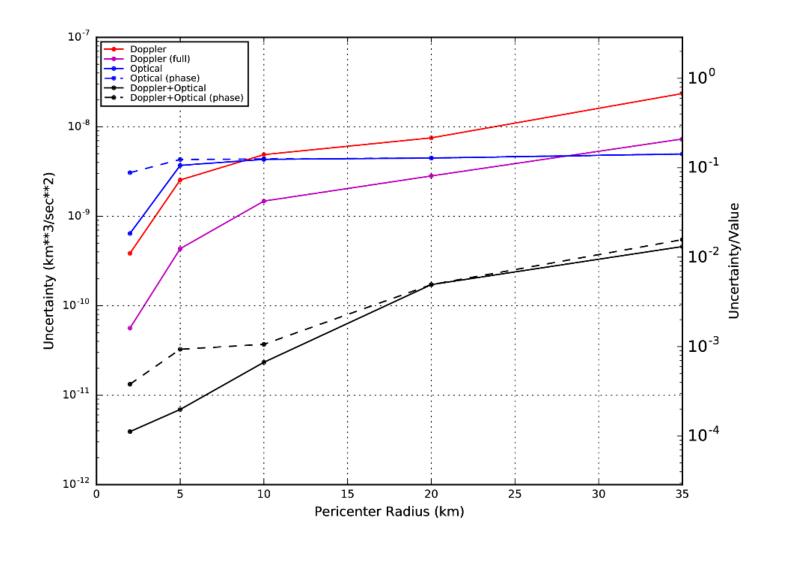
Numerical Simulations

- Numerical simulations of HERA Radio Science Experiment:
 - Assess the feasibility of Radio Science investigations of the Didymos system
 - Provide a preliminary evaluation of the experiment performances
 - Identify the main driving parameters which affect the performances, providing reference values which maximize the scientific return of the mission.
- Gravity science experiment: particular application of spacecraft orbit determination.

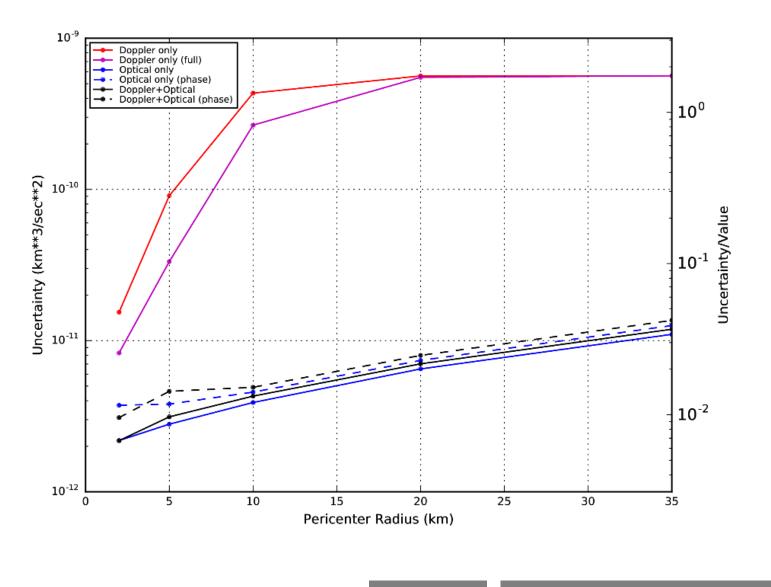


HERA Trajectory Assumptions

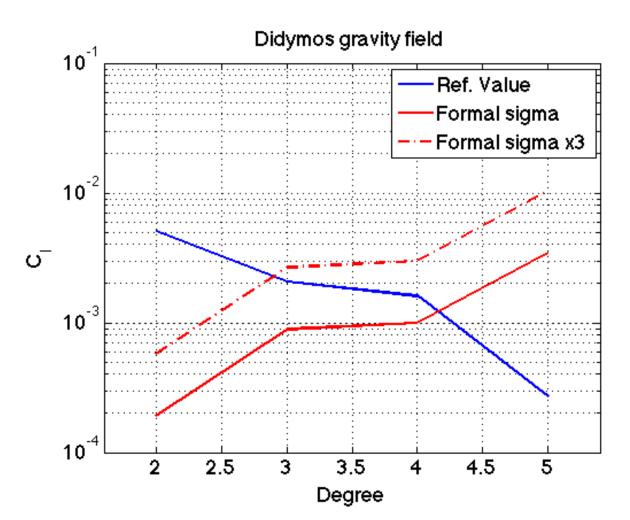
- Mission concept similar to Rosetta: HERA-Didymos orbit consists of a series of hyperbolic arcs connected by impulsive maneuvers to form pyramid-like trajectories
- This strategy is much more flexible and offers the following operational advantages:
 - Lower sensitivity to errors in gravity potential.
 - Lower sensitivity to errors in the maneuvers.
 - More favorable illumination conditions, both for science and optical navigation.
 - Safe escape trajectory in case of S/C problems.
- During this study the same strategy was adopted for the radio science investigations, which should be performed during a limited number of hyperbolic arcs connected to pyramid-like reference trajectory.
- The following **constraints on the S/C trajectory** during radio science arcs apply:
 - No optical measurements can be acquired during tracking periods (HGA to Earth)
 - Maximum Sun phase angle to acquire pictures of Didymos: 60 deg (90 deg)
 - No thruster maneuvers


Radio Science Operations Timeline

- Each arc has a duration T, symmetric around the flyby C/A, with the following timeline:
 - C/A T/2: arc start. Typically an orbital maneuver (M1) is executed just before the arc start, to insert the spacecraft into the desired trajectory.
 - C/A: closest approach to Didymain. The initial conditions of the spacecraft are referred to this epoch. The trajectory is integrated from this state both backward and forward.
 - C/A + T/2: arc end. An orbital maneuver (M2) is performed just after the arc end, to insert the S/C into a new arc of the pyramid-like nominal trajectory.



Single Arc Timeline


Determination of Didymos mass

Determination of Didymoon mass

Determination of Didymos gravity field (by adding a Cubesat in orbit around Didymos)

Results from the COPINS "CUBATA" study led by GMV in 2015-16

- The HERA gravity science experiment at Didymos proved feasible, using realistic assumptions on the technological capabilities of the space and ground segment
- **Optical Navigation** (OPNAV) images are crucial to improve the estimation accuracy of the scientific parameters of interest (GM Primary, GM Secondary)
- Shorter pericentre distances increase the attainable accuracy, but good results are already obtained at large distances using OPNAV images
- Implementation of the phase angle constraint on the acquisition of OPNAV images does not prevent reaching the required level of accuracy
- The addition of a Cubesat in orbit to the binary system increases the accuracies, and gives access to the degree 3 gravity field.