Observational possibilities in the middle infrared spectral region

Hera Workshop 15-16 November 2018 Museum für Naturkunde, Berlin

Kereszturi A.¹, Skulteti A.², Pal B.¹

¹MTA CSFK Astronomical Institute ²MTA CSFK Geographical Institute

Project overview, aims

- Hungarian ESA project (Near Earth Object METeorite LABoratory: NEOMETLAB)
- support thermal infrared camera's (TIRI) definition and development
- optional payload
- by analysing <u>meteorite powders</u> of different
 - grain size, composition
 - shocked properties, mixing ratios
- collaboration with ESA (Kueppers M., Carnelli I., Ulamec S., Ciprianne F.
- what a MIR detector could identify in mineralogy

Methods

- Vertex 70 Fourier Transform Infrared Spectroscopy (1)
- Praying Mantis (Harrick) diffuse reflectance accessory (2)
- low temperature reaction chamber (3)
- standard minerals
 - <100 µm grain size, room temperature
 - olivine, pyroxene, feldspar
- two meteorites
 - NWA 869 (L4-6)
 - NWA 11469 (CO3)

Results – example spectra of standard pure meteorite minerals:

Results – example spectra of meteorite

	olivine		
cm-1 res./pos.	1800-1600	1200-1100	700-600
3,9			
9,7			
19,3			
48,3			
96,5			
193,0			
386,0			

evident band, good shape data			
weak band, poor shape data			
uncertain band			
no observable band			

	feldspar			
cm-1 res./pos.	1300	1100-900	800-700	
3,9				
9,7				
19,3				
48,3				
96,5				
193,0				
386,0				

	pyroxene		
cm-1 res./pos.	1600-1700	1200	600-700
3,9			
9,7			
19,3			
48,3			
96,5			
193,0			
386,0			

Olivin - Reducing resolution

Relative reflectance

Relative reflectance

Piroxenit - Reducing resolution

Kfp - Reducing resolution

Results – testing changes of spectral resolution: NWA 869

	NWA 869	pyroxene	feld	spar
	cm-1 res./pos.	1023	727	645
2	3,9			
5	9,7			
10	19,3			
25	48,3			
50	96,5			
100	193,0			
200	386,0			

evident band, good shape data weak band, poor shape data

uncertain band no observable band

NWA 11469	pyroxene	kaolinite	feldspar	
cm-1 res./pos.	1028	908	647	563
3,9				
5,8				
9,7				
19,3				
48,3				
	by			
	merged			
96,5	bands			
193,0				
386,0				

Results – testing changes of spectral resolution: NWA 869

NWA 869 - Reducing resolution

Results – testing changes of spectral resolution: NWA 11469

NWA 11469 - Reducing resolution

First conclusions

- surveying equally distributed bands in the MIR
- required spectral resolution
 - for pure standard mineral identification:
 - ol, px, kfp: 200 cm-1 (smaller)
 - for minerals embedded in meteorites:
 - px, kaol, fp 10-20 cm⁻¹ (larger)

Expected capabilities:

- better composition analysis
- possible identification of plagioclase
- support for grain size estimation
- geological evolution...

Outlook

- meteorites in 2018-2019
- ideal band positions (not only equally distributed positions)
- implement effect of artificial irradiation (space weathering)

Searching for instrument related technical collaborators!

