On the Potential of Machine Learning in Science Operations

G. Belanger

European Space Agency

Temperature (K)

Temperature (K)

Resolution (eV)

9 S Z) Σ

Resolution (eV) 4 5 6 7

 Σ

Temperature (K)

79 80 81

delta(res) = Math.exp(0.4*delta(T))

Resolution (eV)

Is Machine Learning about recognizing cats and dogs?

Machine Learning is maths and Stats

 $L(\boldsymbol{\nu}|\boldsymbol{n})$

 $\cdot v_i^{n_i} e^{-v_i}$ _ $n_i!$ i

- $(x_i - \mu_i)^2 / 2\sigma_i^2$ $L(\boldsymbol{\mu},\boldsymbol{\sigma}|\boldsymbol{x})$ _ $2\pi\sigma_i^2$ i

 $-x_i^{k_i/2-1}e^{-x_i/2}$ $L(\boldsymbol{k}|\boldsymbol{x})$ $\frac{1}{i} \frac{1}{2^{k_i/2} \Gamma(k_i/2)}$

1 x_i/τ_i T $-e^{i}$ au_i ⊥ ⊥ i

 $t_i/$ i x_i е $\overline{x_i^2}$ •

Machine Learning is actually Statistical Learning

Statistical Learning relies on Inference

Inference really means Bayesian Analysis

Best guess = Prior x Likelihood

Revolution Number

Takeaways

- Machine Learning is about maths, statistics, and inference.
- There is a lot more to do besides clustering and classification.
- There are literally millions of parameters that need to be monitored.
- We can do a lot better than simple alarms on out-of-range values.
- The potential for Statistical Machine Learning in SciOps is massive.

