GRANDMA concept and overview GRANDMA infrastructure: ICARE Summary of O3 follow-up campaign so far Summary and perspective

THE GRANDMA GW FOLLOW-UP NETWORK

GLOBAL RAPID ADVANCED NETWORK DEVOTED TO THE MULTI-MESSENGER ADDICTS (ANTIER ET AL. ARXIV: 1910.11261)

David Corre

Laboratoire Accélérateur Linéaire, Orsay, France

SCIOPS 2019

David Corre

21/11/2019

GRANDMA

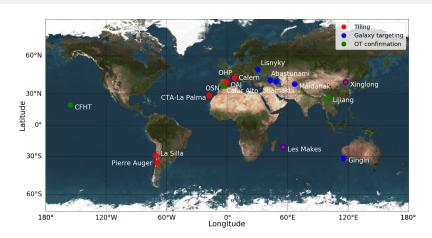
GRANDMA concept and overview GRANDMA infrastructure: ICARE Summary of O3 follow-up campaign so far Summary and perspective

OUTLINE

GRANDMA CONCEPT AND OVERVIEW

GRANDMA INFRASTRUCTURE: ICARE

SUMMARY OF O3 FOLLOW-UP CAMPAIGN SO FAR


SUMMARY AND PERSPECTIVE

SCIOPS 2019 David Corre 21/11/2019 GRANDMA 2/18

GRANDMA CONCEPT FOR GW-EM FOLLOW-UP

- Created in April 2018 by OCA (Nice), LAL (Orsay) and NAOC (Beijing). P.I.: Sarah Antier.
- GWs can be anywhere -> Global coverage!
- Discovery and follow-up network.
- Connect facilities that are not connected. Involve countries with limited resources in forefront science!
- Common infrastructure for all teams.
- Optimised observing strategy within the network: tiling + galaxy targeting.
- Citizen science project to involve amateur astronomers.

SCIOPS 2019 David Corre 21/11/2019 GRANDMA 3/18

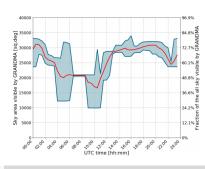
SCIOPS 2019

David Corre

21/11/2019

GRANDMA

- 65 scientists (astronomers, astrophysicists, GW physicists) in 22 institutes spread over 11 countries.
- 23 telescopes, both robotic and "manual".
- 22 imaging, 4 spectroscopy facilities. (img: 18-23 mag in typical observation, spec: 18-20 mag in 1h).


SCIOPS 2019 David Corre 21/11/2019 GRANDMA 5/18

- 65 scientists (astronomers, astrophysicists, GW physicists) in 22 institutes spread over 11 countries.
- 23 telescopes, both robotic and "manual".
- 22 imaging, 4 spectroscopy facilities.(img: 18-23 mag in typical observation, spec: 18-20 mag in 1h).

Telescope Name	Location	Aperture (m)	FOV (deg)	Filters	$3 - \sigma$ limit (AB mag)	Maximum Night slot (UTC)
TAROT/TCH	La Silla Obs.	0.25	1.85×1.85	Clear, g'r'i'	18.0 in 60s (Clear)	06h-15h
CFHT/WIRCAM	CFH Obs.	3.6	0.35×0.35	JH	22.0 in 200s (J)	10h-16h
CFHT/MEGACAM	CFH Obs.	3.6	1.0×1.0	g'r'i'z'	23.0 in 200s (r')	10h-16h
Zadko	Gingin Obs.	1.00	0.17×0.12	Clear, $g'r'i'I_C$	20.5 in 40s (Clear)	12h-22h
TNT	Xinglong Obs.	0.80	0.19×0.19	BVg'r'i'	19.0 in 300s (R _C)	12h-22h
Xinglong-2.16	Xinglong Obs.	2.16	0.15×0.15	BVRI	21.0 in 100s (R _C)	12h-22h
GMG-2.4	Lijiang Obs.	2.4	0.17×0.17	BVRI	22.0 in 100s (R _C)	12h-22h
UBAI/NT-60	Maidanak Obs.	0.60	0.18×0.18	BVR_CI_C	18.0 in 180s (R _C)	14h-00h
UBAI/ST-60	Maidanak Obs.	0.60	0.11×0.11	BVR_CI_C	18.0 in 180s (R _C)	14h-00h
TAROT/TRE	La Reunion	0.18	4.2×4.2	Clear	16.0 in 60s (Clear)	15h-01h
Les Makes/T60	La Reunion.	0.60	0.3×0.3	Clear, BVR_C	19.0 in 180s (R _C)	15h-01h
Abastumani/T70	Abastumani Obs.	0.70	0.5×0.5	BVR_CI_C	18.2 in 60s (R _C)	17h-03h
Abastumani/T48	Abastumani Obs.	0.48	0.33×0.33	$UBVR_CI_C$	15.0 in 60s (R _C)	17h-03h
ShAO/T60	Shamakhy Obs.	0.60	0.28×0.28	BVR_CI_C	19.0 in 300s (R _C)	17h-03h
Lisnyky/AZT-8	Kyiv Obs.	0.70	0.38×0.38	$UBVR_CI_C$	$20.0 \text{ in } 300 \text{s}(R_C)$	17h-03h
TAROT/TCA	Calern Obs.	0.25	1.85×1.85	Clear, g'r'i'	18.0 in 60s (Clear)	20h-06h
IRIS	OHP	0.5	0.4×0.4	Clear, $u'g'r'i'z'$	18.5 in 60 s (r')	20h-06h
T120	OHP	1.20	0.3×0.3	BVRI	20.0 in 60s (R)	20h-06h
OAJ/T80	Javalambre Obs.	0.80	1.4×1.4	r'	21.0 in 180s (r')	20h-06h
OSN/T150	Sierra Nevada Obs.	1.50	0.30×0.22	BVR_CI_C	21.5 in 180s (R _C)	20h-06h
CAHA/2.2m	Calar Alto Obs.	2.20	0.27⊅	u'g'r'i'z'	23.7 in 100s (r')	20h-06h

- 65 scientists (astronomers, astrophysicists, GW physicists) in 22 institutes spread over 11 countries.
- 23 telescopes, both robotic and "manual".
- 22 imaging, 4 spectroscopy facilities.
 (img: 18-23 mag in typical observation, spec: 18-20 mag in 1h).

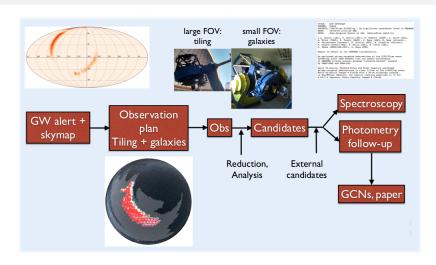
- Covering >40% of the sky at all times
- Constantly looking for new members!

SCIOPS 2019

David Corre

21/11/2019

GRANDMA


GRANDMA concept and overview
GRANDMA infrastructure: ICARE
Summary of O3 follow-up campaign so far

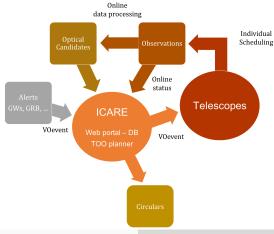
Summary and perspective

Overview

Web interface Common detection pipeline

COORDINATED OBSERVATIONS

SCIOPS 2019 David Corre 21/11/2019 GRANDMA 6/18


Infrastructure requirements

- Infrastructure must allow to:
 - automatise MM follow-up from alert reception to the sending of coordinated observation plans to a network of independent telescopes, and report of observations.
 - Web portal to monitor in real-time the network follow-up.
 - Centralise information in a single common database.
 - Homogenise the photometry with a common detection pipeline.
- Common communication protocol (IVOA based).
- Open source.
- Adaptable to any network of telescopes.

SCIOPS 2019 David Corre 21/11/2019 GRANDMA 7/18

ICARE: Interface and Communication for Addicts of the Rapid

FOLLOW-UP IN MULTI-MESENGER ERA (CORRE ET AL. IN PREP)

SCIOPS 2019 David Corre 21/11/2019 GRANDMA 8/18

Summary and perspective

Overview Web interface

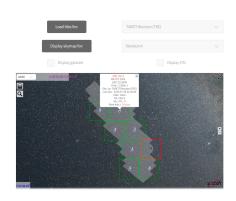
Common detection pipeline

AUTOMATIC COORDINATED OBSERVATION PLANS

- Automatic scheduler for each telescope.
- Observations coordinated within the network using gwemopt¹.
- Tiling or galaxy targeting approach depending on telescopes FoV.
- Galaxy catalog: GLADE, Mangrove².
- Communication protocol: standardised VOEvent sent through a broker (comet).

SCIOPS 2019

David Corre


Initial sky scanning

https://github.com/mcoughlin/gwemopt

²Ducoin, Corre et al., submitted to MNRAS, https://arxiv.org/abs/1911.05432

REAL TIME MONITORING OF THE FOLLOW-UP

- Visualisation of the GW skymap region using MOC and Aladin.
- Display each tile sent to the telescopes.
- Status of the observations (time, airmass, lim. mag, ...)
- Localise optical candidates, even found by other teams.
- Observations are automatically reported with a python based API.

REAL TIME MONITORING OF THE FOLLOW-UP

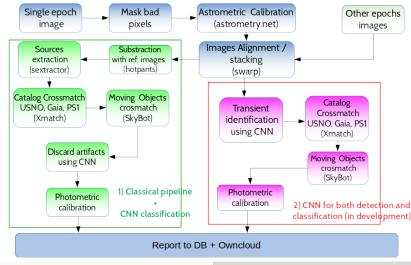
- Visualisation of the GW skymap region using MOC and Aladin.
- Display each tile sent to the telescopes.
- Status of the observations (time, airmass, lim. mag, ...)
- Localise optical candidates, even found by other teams.
- Observations are automatically reported with a python based API.

WEB INTERFACE: OPTICAL COUNTERPART CANDIDATES

- Reported through a python API.
- Internal rating.
- Visual inspection of sub-images with respect to catalogs (PS1, Gaia) using Aladin lite.
- Multi-wavelength light curve to help for characterisation.
- OT candidate characterisation performed using machine learning on photometric light curve + spectroscopy.
- Observability in the next 24h for all network observatories.
- Send observation request to a specific telescope (VOEvent).

SCIOPS 2019 David Corre 21/11/2019 GRANDMA 11/18

GW FOLLOW-UP: GCN CIRCULAR GENERATION

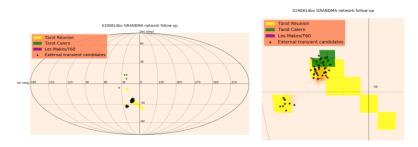

- Help the shifters to made the results rapidly available to the community.
- Automatic GCN circular generation summarising the follow-up campaign, and OT candidates.
- Send directly from the web portal to https: //gcn.gsfc.nasa.gov/

Select telescopes for generating GCN. (Only telescopes that have reported observations are dispayed) Tiling strategy: TAROT-Galern TAROT-CHIL ▼ TAROT-Reunion ▼ FZU-Auger Galaxy targetting strategy: LIGO/Virgo S191189d : TAROT-Calern (TCA) - FZU-Auger - TAROT-Reunion (TRE) / GRANDMA D. Corre (LAL), N. Christensen (Artemis), M. Coughlin (Caltech), W. Lin (THU), C. Stachie (Artemis), M. Boer (Artemis), L. Eymar (Artemis), S. Karpov (FZU), A. Klotz (IRAP), M. Masek (FZU), K. Novsena (Artemis, IRAP), S. Antier (APC), A. Coleiro (APC), D. Coward (OZGray-UNA), J.G. Ducoin (LAL), B. Gendre (OZGray-UNA), P. Hello (LAL), D. A. Kann (HETH/IAA-CSIC), N. Kochiashvili (Iliauni), C. Lachaud (APC), N. Leroy (LAL), C. Thoene (HETH/IAA-CSIC), D. Turpin (NAOC), X. Mang (THU) Report on behalf of the FZU-Auger, TAROT-Calern (TCA), TAROT-Reunion (TRE) and GRANDMA collaborations. **GRANDMA** 12/18

Send GCN circular summarising GRANDMA follow-up campaign Please read carrefully and correct the circular if necessary before sending the circular! Summary and perspective

Overview
Web interface
Common detection pipeline

COMMON DETECTION PIPELINE (IN DEVELOPMENT)


SCIOPS 2019 David

David Corre

21/11/2019

GRANDMA

EXAMPLE OF FOLLOW-UP FOR S190814BV

- ▶ NSBH (99%), D_{lum} = 267 ± 54 Mpc, 90% error box: 23 deg².
- Observations: 31min after trigger, total: 18h.
- ▶ 162 deg², 91% of latest skymap covered. (large initial skymap)
- No counterpart found to 19mag.

SCIOPS 2019 David Corre

Summary and perspective

SUMMARY OF O3A FOLLOW-UP: GLOBAL EFFORT

	GW alert rate	Telescopes involved	Time available	Delay	Nom. sensitivity GW Follow-up	Nom. sensitivity counterpart Follow-up	Spectroscopy	Other-wave length
GRANDMA		23 in 17 sites			17 – 21 (c,r)		~ 19 mag	gamma
GROWTH	8	~60 in 19 sites	few hours per alerts	~ hours	20.5 (g, r) ~22 (r, z)	-23	~ 22 mag	gamma radio
MASTER		14 in 7 sites			- 19 (c)		no	-
GRAWITA	~8	~10 in 3 sites	few hours per alert Asiago unlimited	~ hours	16 – 22 (r)	~23	~ 22 mag collab. ENGRAVE	radio
GOTO	~ 5	2 in 2 sites	few hours per alerts	~ dozen of minutes	~20 (I)	-21	-	-
SVOM	11	7 in 3 sites	unlimited	~ hours	16 - 18 (c,r)	~21	~ 19 mag	Future
PS1 – Atlas	~7	2 in 1 site	few hours per alerts	~ hours	~19.5 (o) ~ 21 mag (i)	-22	collab. ENGRAVE	-

- 22 GCNs on 18 differents events.
- ► The first six months of the Advanced LIGO's and Advanced Virgo's third observing run with GRANDMA. Antier et al., MNRAS, 2019

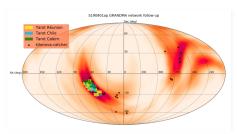
SCIOPS 2019 David Corre 21/11/2019 GRANDMA 15/18

CITIZEN SCIENCE PROGRAM

- More than 40 (amateurs) participants spread all over the world.
- ▶ 15-30cm telescopes.
- Observations for S190814bv and S190901ap analysis by GRANDMA.
- GCN on S190101ap.
- https://
 grandma-kilonovacatcher.
 lal.in2p3.fr

GRANDMA concept and overview GRANDMA infrastructure: ICARE

Summary of O3 follow-up campaign so far


Summary and perspective

Example of follow-up for S190814bv Summary follow-up for O3A

Citizen science

CITIZEN SCIENCE PROGRAM

- More than 40 (amateurs) participants spread all over the world.
- ▶ 15-30cm telescopes.
- Observations for S190814bv and S190901ap analysis by GRANDMA.
- GCN on S190101ap.
- https://
 grandma-kilonovacatche of Manay-target per la comparation of the comparation of

TITLE: GCN CIRCULAR

SUBJECT: LIGO/Virgo S19090lap: No significant candidates found in GRANDMA DATE: 19/09/09 13:53:09 GMT FROM: Jean-Gregorier Duccin at LAL <duccin#lal.in2p3.fr>

J.G. Ducoin (LAL), S. Antier (APC), B. Chabert (IRAP), D. Corre (LAL), A. Klotz (IRAP), D. Turpin (NAOC), S. Basa (LAM), M. Boor (Artemis), N. Christensen (Artemis), A. Coleiro (APC), M. Coughlin (Caltech), D. Coward (O2Grav-UNA), P. Hello (LAL), N. Leroy (LAL), C. Thone (EERFI/LAA-GSIC), X. Wang (TBM)

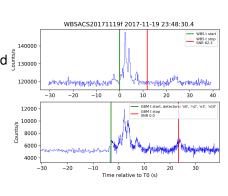
Report on behalf of the GRANDMA collaboration.

We performed galaxy-targeted observations of the LIGO/Virgo event S190901ap event (CGN #25566) which the aman of the tonomics of GRANDMA citizen science program "kilonova-catcher" created by CNBS/TAP and CNBS/TAL.

Denis St-Gelais, Raymond Kneip and Peter Jaquiery performed galaxy-targeted observations in clear filter of the S19090lap event. Denis St-Gelais imaged 8 fields with a 36-cm telescope located in Querf&tarc (Mexico); the typical limiting magnitude is 19 for a 60.0 s exposure. Peter Jaquiery imaged 8 fields

SCIOPS 2019

David Corre


21/11/2019

GRANDMA

SUMMARY AND PERSPECTIVES

OPTICAL NETWORK BUT NOT ONLY... GRB SEARCHES

- Fermi/GBM, INTEGRAL/SPI-ACS daily data
- ► Offline detection of GBM and § 130000 SPI-ACS gamma-ray transients with wild binary segmentation 3 120000
- Prospectives to include spatial data analysis tools into the ICARE plateform to create synergies between space and ground systems

³Antier, Barynova et al., submitted to MNRAS, https://arxiv.org/abs/1909.10002

SUMMARY AND PERSPECTIVES

SUMMARY

- GRANDMA is a truly global network for GW-EM follow-up (and continuously getting expanded).
- Inclusion of many groups from countries not involved in follow-up.
- End to end infrastructure -> attractive for new telescopes.
- Infrastructure in active development. Open source release soon (https://gitlab.in2p3.fr/icare/icare)

PERSPECTIVE

- Neutrinos and GRB follow-up. (MoU with ANTARES, KM3NET)
- Between O3 and O4: kilonovae search based on GRB alert and optical surveys.

SCIOPS 2019 David Corre 21/11/2019 GRANDMA 18/18