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1. Introduction 
This White Paper has been written in perspective of the ESA consultancy “Voyage 2050” in order to go 
beyond the simple ESA public consultation. It is focused on the very difficult question of Venus sample 
return already studied in depth by NASA /JPL and ESA.  
The Venus sample return is very interesting from the scientific point of view. The soil composition analysis 
will offer clues on the mechanisms explaining the differences between Venus and Earth. 
However the sample recovery is extremely difficult. The ground conditions are very harsh (460°C, 9.6 MPa). 
The Delta V requirement is almost as high as on Earth, and the launch shall occur above 55 km I e. 
suspended under a balloon, thus requiring an UAV to lift the samples from ground to balloon altitude. 
The mission involves several critical points, each with a significant probability of failure: 

 Thermal exposure during sample drilling. 

 Fast balloon inflation under very high temperature. 

 Thermal exposure of the UAV during ascent to launch altitude. 

 Error on launch parameters leading to the impossibility to perform a rendezvous with orbital 
vehicle. 

The purpose of this document is to propose new methods at each critical step, involving a risk reduction for 
the mission… at the expanse of launch mass. 
Owing to the overall launch mass and mission complexity, this proposal may be ranked in the “L” class 
mission. 

2. Venus characteristics 

2.1 Planet characteristics 
Parameter  Venus  Earth  Ref.  

Mass (kg)  4.869E+24  5.974E+24  [NSSDC]  

Equatorial radius (km)  6051.8  6378.1  [NSSDC]  

Density (kg/m3)  5243  5515  [NSSDC]  

Surface gravity g (m/s2)  8.87  9.78  [Allen99]  

Equatorial escape velocity (km/s)  10.36  11.18  [Allen99]  

Solar day: 116.5 terrestrial days. At a 300km altitude, the orbital speed is 7151 m/s. 

2.2 Atmosphere composition: 
The atmosphere is essentially formed of CO2 (96.5%) and nitrogen (3.5%). 

2.3 Cloud layers: 
31 - 51 km haze 
51 – 52 km  clear zone 
52 - 58 km  Sulfuric acid droplets (25% water) 
58 – 68 km Ice crystals 

2.4 Atmosphere model: 
The following table provides the values used in the study 

Height T P D Zonal wind speed 

(km) (°C) (bar) Kg/m3 (m/s) avg (min-max) 

70 -43 0.037   92 (62 – 124) 

55 29 0.53  0.93128 60 (39 – 90) 

50 77 1.1  1.6689 61 (38 – 80) 

30 224 9.6  10.298 36 (22 – 49) 

10 385 38  5 (-2 – 11) 

0 462 92 66.381 0.5 (-1 – 1) 
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Planetary protection: No protection required. Aerobot and microprobes fall under a COSPAR category I 
mission. 

3. Consequences: 
 
The examination of these tables suggest several findings: 

 The safe altitude for an airborne rocket launcher is between 50 and 55 km altitude: below 50 km, 
the temperature is too high for the propellants, above 55 km, the density could be too low for a 
“high temperature” balloon or for an UAV. 

 This zone is covered by sulphuric acid clouds except the 51 to 52 km layer, too narrow for a safe 
operation. Therefore, optical rendezvous may be not practical and should be replaced by RF link. 

 The zonal winds (60 m/s at 55km altitude) complicate the rendezvous between a balloon or UAV 
and the air borne launcher. This is why most scenarios imply an equatorial sample return. 

 The solar flux is sufficiently high at 50 – 55 km to supply the vehicles. 

 The safe altitude for a conventional balloon inflation is at least 30 km (224°C temperature is 
compatible with Kapton® use). 

 The Venus ground atmosphere density is 40 times higher than sea level atmosphere. Therefore, it is 
much easier to move an UAV on Venus than on Earth. On Venus surface, the required power will be 
7 times lower than on Earth for the same thrust. 

4. Analysis of previous works 
The reference [1] provides a very detailed mission analysis and architecture proposal. 
The VAV (Venus Ascent Vehicle) was supposed to be launched from 66 km altitude and included 3 solid 
propellant stages (STAR 24C, 17A and 13A, for a total launch mass of 476 kg and 8375 m/s Delta V for a 300 
km circular equatorial orbit, orbital period 93 minutes). These solid propellant thrusters would require 
major modifications to integrate a TVC nozzle. The VAV payload was 2 kg. The margin for gravity losses, 
aerodynamic drag and thrust orientation was fairly low (only 1220 m/s) while the common practice is 1500 
m/s. 
The lander was bathed by ambient pressure but protected by noble gas (helium) and fibrous thermal 
insulation (figure 1). The authors recognised that helium was not the best choice (high thermal 
conductivity). 
Another big issue in this design was the effect of external pressure on solid propellant stages they may not 
survive 9 MPa external (buckling) pressure. 
A third point is the maximum temperature encountered by solid propellant during the whole VAV mission. 
The slow balloon ascent will tax the overall mission duration by several hours (four hours), thus potentially 
leading to solid propellant overheating (safe storage temperature is generally limited to 60°C). 
The balloon survival is problematic: it shall be inflated rapidly and be operational from 9.6 MPa to 0.01 MPa 
(almost a factor 1000 on volume). This is barely feasible on Earth for stratospheric balloons, benefiting in 
addition of the added advantage of an auxiliary balloon to lift the payload inside the troposphere. 
The mass budget is very constrained (3 tons) in order to fit within the launch capability of a Delta4 M with a 
C3 value of 9 km2/s2. 
Both orbiter and lander were using a ballute to perform aerocapture. This very risky approach was intended 
to save mass (14% of the entry mass instead of 30% with conventional shied). The entry speed was 11.75 
km/s.  
In a more recent document [4] the authors stressed the interest of UAV to raise the samples from ground 
to balloon flying altitude (55 km) in order to get rid from the risks of balloon inflation on Venus surface 
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Figure 1 launch configuration for the Venus Surface Sample Return system. The Venus ascent vehicle (VAV) shown in the Landed 
Ascent systems is just under 3m long. 

 

5. Proposed Mission profile 
The mission involves four types of vehicles: 

 An orbiter, intended to return the samples to Earth (sample return orbiter). 

 A second orbiter holding multiple landers, aiming at increasing the overall probability of success. 
Each lander includes an UAV, able to lift-off vertically and return to the balloon with the sample. 

 A rocket / balloon assembly, drifting at 55 km altitude and collecting the different samples before 
returning toward the orbiter and delivering the samples. 

 Small planetary probes for navigation and RF relay purposes between the various modules. 
At least two launchers, and preferably three, are required to launch the payloads. 

 The balloon / rocket assembly requires the heaviest launcher (ARIANE 64 or equivalent). 

 A second launcher can lift the three landers, the sample return orbiter and the four navigation / 
relay small probes (will also require ARIANE 64 or equivalent). 

Using three launchers may provide more flexibility. The second launcher will launch the three landers and 
the third one the sample return orbiter with the small planetary probes. 
The added benefit of three separate launches is the increased possibility of international cooperation. One 
of the three launches can be performed outside Europe. 
The launches can take place several months apart. The last vehicle in operational orbit (300km) shall be the 
rocket / balloon assembly, in order to limit the storage time of liquid hydrogen (balloon inflation). 
All three large orbiters (rocket / balloon assembly, sample return orbiter, multiple landers orbiter) will 
follow the same orbit insertion technique: chemical capture on a highly elliptical orbit and orbit 
circularisation to 300 km by EP and / or aerobraking. The EP circularisation will take more than one year. 
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This mission profile is preferred to the classical hyperbolic entry. The expected benefits are related to the 
much lower deceleration of the entry body (6 g max. instead of 200) and the much lower mass budget for 
the entry shield. 
 
Lander and sample collection: 
The lander baseline is an UAV, taking off vertically from the Venus surface after sample collection, able to 
benefit from wings lift in order to spare the electrical power for cruise and balloon search and returning to 
vertical lift for the balloon / rocket rendezvous. The lander UAV is described in chapter 6. 
 
Bearing in mind the strong winds at 55 km altitude, The UAV ascent will be synchronised with the 
anticipated balloon / rocket position at the anticipated rendezvous time. For example, if the ascent 
duration is 1 hour (55 km), the balloon / rocket will drift 216 km during this hour. The RF visibility radius is 
818 km, more than sufficient for mutual position determination. 
On the other hand, the vehicles orbiting at 300 km will only be “visible” from ground during only 539 s, 
much less than the descent ascent duration. Hence the great interest of relay satellites on higher orbit for 
telemetry relay and navigation. 
The UAV lander could be used for atmosphere monitoring during descent / ascent with instrumentation 
such as: temperature, pressure, turbulence, nephelometer, wind speed and direction deduced from RF 
signal location and last, ground imagery before landing. 
 
The rocket balloon assembly is described in chapter 7 and the Sample return orbiter in chapter 8. 

6. UAV Lander 

6.1 UAV Thermal control 
The most difficult question is the lander thermal control. The heat flux from the outer atmosphere at 460°C 
will be limited by thermal insulation and absorbed by a phase change thermal accumulator. 
Two techniques are considered: 

 Thermal insulation under double wall vacuum. 

 Thermal insulation at ambient pressure (as in the case of [1]). 
 
Governing parameters: 
(Either double wall or ambient pressure). They show that the overall size governs the “lifetime” of the 
insulation / heat accumulator combination. The required “lifetime” shall be at least 12 hours. 
The candidates for phase change materials (PCM) are alkali metals and water ice: 

 Tf°C Lf kJ / kg Cp kJ / kg K Conductivity W / m K Specific Mass Kg / m3 

 

Li 

Na 

K 

H2O 

 

179 

97 

64 

0 

 

420 

115 

  61 

334 

Solid   liquid 

3.30         3.3 

1.23         1.3 

0.74         0.8 

2.1           4.18 

Solid  liquid 

  71          43  

135          85 

  99          50 

    2,3        0,6  

Solid     liquid 

530 

970 

860 

 912        1000 

 
Water ice is retained. The working temperature is from -20°C to + 40°C. Thus the overall heat capacity is 
543200 J/kg. 
Practically, the ice is contained in small plastic pellets. A fluid loop insures the heat transfer to the payload. 
The pellet scheme is used in the refrigeration industry as heat accumulator. 
The accumulator will be frozen in space during the interplanetary cruise, using an auxiliary cooling loop. 
 
Thermal insulation under double wall vacuum 
The computations are made in the case of a sphere. 
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The overall design is very close to the one of Ariane 5 SSHeL (Sous Système de Stockage d’Helium 
Liquide).The spherical or cono-spherical shape can be easily integrated in an aerodynamic structure like a 
quadcopter (figure 2). The figure 3 shows a possible layout for a winged quadcopter also able to cruise like 
a plane in order to save energy at rendezvous altitude. 
 

Temperature (K) 360 490 600 733 * 

Effective conductivity *10^6 (W/cm.°C) 3 4.5 7 9.5 

(*): This value (460°C) is extrapolated for the purpose of the study. 
The equivalent conductivity can be computed from the formula: 

 x 106 = 2.3 + 0.00045 (T - To) + 0.5 (T 2.5 - To 2.5)/To 2.5 

The MLI is 1.27 cm thick, and includes 30 layers. The cold temperature is 286 K (13°C). 
These values are from the reference:  
Performance of multilayer insulation systems for the 300 to 800 K temperature range. E. R. Streed et Al. 
AIAA-65-663. AIAA Thermophysics Conference. September 13-15 1965. 
The corresponding flux is 33.4 W/m2 at 733 K. 
The conductive losses (polar or equatorial mount, harness) shall be added. 
 
The following table provides computations for 1 m and 0.5 m diameter spheres. As expected, the “lifetime” 
of the 1 m diameter sphere is 2 times higher. 
 

Sphere diameter m 0,5 1 

Radiative Flux W/m2 33,4 33,4 

Radiative heating W 26,232 104,929 

Conductive losses W 25 100 

Heating power W 51,232 204,929 

Cp ice J/kg.K 2100 2100 

L J/kg 334000 334000 

Cp water J/kg.K 4180 4180 

Ti  -20 -20 

Tf  40 40 

Heat capacity J/kg 543200 543200 

Sphere volume m3 0,0654 0,5236 

PCM mass kg 6,545 52,360 

Heat storage J 3555235,69 28441885 

Duration Hour 37,65 75,29 

 
The PCM mass is estimated supposing that it requires 10% of the inner sphere volume and a 1000 kg / m3 
specific gravity. 
Practically, the lifetime will be much smaller, due to the heat dissipated by the battery operation, the 
electronics and possibly the electrical motors. 
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Figure 2: UAV Aerodynamic integration 

 
 
Figure 3: Inflight (cruise) configuration 

The figure 4 shows the thermal insulation concept (polar mounting). 
The external shell includes a honeycomb structure to improve the buckling resistance (9.6 MPa external 
pressure).The material for sphere and honey comb could be silicon carbide offering a good combination of 
mechanical resistance (1000 Pa) elasticity modulus (20 GPa) and low density (2.5). 

Sample drilling device 

Wing 

Landing gear 

Sample drilling 

device 

Wing 
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Figure 4: Evacuated thermal insulation concept. 

The figure 5 shows an alternate configuration with a low thermal conductivity equatorial flange. 
The figure 6 show the mounting sequence of the evacuated sphere. After payload integration, the upper 
part of the inner sphere is welded (e. g. by laser with controlled inner atmosphere). The upper thermal 
insulation is added and the upper outer hemisphere is positioned under vacuum and brazed by local EB 
heating. 
 

Outer shell 

Honeycomb 

Polar stud 

Vacuum 

Payload 

Superinsulation 
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Figure 5: Alternate design with equatorial flange 
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Figure 6 Steps of sphere closing 

Thermal insulation at ambient pressure 
This layout has the great advantage to get rid of the pressure shell (and its mass penalty). Most electronic 
components and batteries can work under high ambient pressure. This is the case of batteries used 
exploration submarines and ROV. 
On the other hand, the gas shall remain under 40°C to enable correct payload operation and the thermal 
insulation will be less efficient than superinsulation under vacuum. 
In order to improve thermal insulation, it is proposed to use a low thermal conductivity noble gas, flowing 
in laminar flow, in order to limit the heat flow in porous thermal insulation. This insulation will be made of 
either of MinK® or aerogel (silica or BN). In both cases, the thermal conductivity will be lower than the one 
of still air. 
Xenon is the gas of choice. Its thermal conductivity is very low and it can be stored in supercritical mode 
with a very low mass penalty. By putting a second xenon tank outside, the progressive temperature 
increase will provide a flow in the inner supercritical xenon tank and the fluid will fill the volume to be 
cooled. A pressure regulator will control the supplied pressure. 
As in the previous case, a water ice PCM will provide the cooling (figure 7). 
The dead volume shall be very low in order to reduce the xenon inventory. 
The laminar xenon flow will fill the inner cavity then flow downside in the double all and exhaust through 
the porous plug at the bottom. 

Payload 

Top Inner shell 

laser welded 

Laser 

beam 

Vacuum brazing 
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Xenon will be also supercritical as ambient ground pressure is higher than the critical point: 
Critical temperature (Tc)  289.733 K  
Critical pressure (Pc)   5.8420 MPa  
Critical density (Dc)  1100. kg/m3 
At 298 K and 9 MPa, the density will reach 1706.1 kg/m3.  
The thermal conductivity will be only 0.029272 W/m*K. 
For a 30 cm dia. and 60 cm high body, the conducted loss through the nano porous material will be 202 W. 
Using a 12.5 kg PCM, the heat flux will be absorbed during 9.3 hours. 
This layout is well suited to small UAV. 
 

 
 
Figure 7 : Ambient pressure thermal insulation 

 
Electrical motors: 
A first solution consists in using high temperature motors with copper wire ceramic insulated (Cerafil ®)and 
immersed in a boron nitride cement for heat dissipation. The rotor permanent magnets will use a special 
version of SmCo5 able to handle 460°C (the normal ones are limited to 250°C). This will cost a 20 % loss on 
magnet performance. 
The second solution is to cool the motors by a fluid loop linked to the main body and use vacuum insulation 
to lower the external heat flux. The big advantage of this solution is to allow for conventional motor 
technique. 
 
UAV / Balloon rendezvous 
The figure 8 shows the timeline of the rendezvous. 

Electronics 

Battery 

Phase change material 

Xenon tank 

Outer Xenon tank 

Foam insulation 

Double wall 

Porous plug 
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The RF horizon from the lander to 55 km altitude is 800 km (radius). Due to the altitude winds, the balloon / 
rocket will be visible during 7.6 hours. Supposing that the UAV takes 1 hour to climb to 55 km (this may be 
an optimistic value), the balloon will drift on 216 km during this time. 
Anyway, this shows that RF visibility is not a problem for a permanent RF link during ascent and 
rendezvous. 
 

 
Figure 8 Balloon / UAV climb synchronisation 

6.2 Sample recovery Balloon option 
 

The recovery helped by a balloon is a fall-back solution if the UAV recovery reveals impractical (autonomy). 
However, it shall be noted that the rendezvous will be best performed by an UAV suspended under the 
balloon as the balloon will provide only a limited manoeuvring capability. 
 

Metal balloon 
 

Due to the high temperature of the Venus surface, a metal foil (e. g. 100 µm) combined to a glass fibre 
canvas (with polyimide impregnation) may be the safest way to get a suitable balloon envelope. Pure 
aluminium wall offer a very high plastic domain. At 460°C the mechanical resistance will be very low, hence 
the necessity to handle the stress with a glass fibres canvas. The folding of the envelope shall be performed 
very carefully to avoid any shear down of the metal foil (origami style folding).  
 

Kapton® balloon 
 

The Kapton® balloon can be inflated only near30 km altitude, due to temperature limitation. The initial 
pressure will be 0.96 MPa, lowered to 0.05 MPa at cruising altitude (55 km). 
The flight from ground level to 30 km will be provided by an UAV, thus sparing the higher power required 
to fly in the lees dense atmosphere from 30 to 55 km. The last phase of the rendezvous will be performed 
by the UAV. 
 

6.3 Landers launch configuration 
Up to three landers can be accommodated on a single interplanetary module (figure 9). This layout is 
intended to increase the mission’s probability of success. The fourth location on rocket’s third stage (figure 
11) will be used for atmospheric samples.  
The very large shell helps to reach a very low ballistic coefficient: 
 

Shell dia. m 3.6 

Mass kg 450 

Ballistic coefficient kg/m2 44.21 

RF horizon : 800 km 

1 hour climb 55 km 

Balloon at UAV take-off 

UAV 

216 km drift 

Balloon at rendezvous 
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The entry will be triggered by a small solid propellant motor. No parachute will be used as the aeroshell will 
play in part this role. Then the aeroshell will be jettisoned and the UAV will land in helicopter mode. 
 

 
Figure 9 Multiples landers accommodation 

7. Rocket / balloon assembly 
 
The proposed rocket / launcher layout is: Two stages solid, bipropellant third stage. 
Several micro launchers studies has been performed in Europe and abroad. Even using air launch, the 
minimum mas for a significant payload (40 -60 kg) is at least 6 tons. The first and second stages used solid 
propellant with Flexseal movable nozzle. The third stage used bipropellants, offering three advantages: 

 The specific impulse is slightly higher than the solid one. 

 The third stage is restartable, offering the possibility of a coast phase during flight (this is beneficial 
for the overall performance). 

 The RCS can be used for roll control during second stage flight, fine orbit trimming and rendezvous. 
 

For the proposed Venusian case, the layout could be:  

 P 2.5 first stage, P 1 second stage, L0.25 bipropellant third stage. 
P stands for solid Propellant stage. 
The P 2.5 and P 1 will be scaled down version of a P6 design studied for micro-launchers. 
  

Third stage description 
490 N main engine, high Isp, 312 s 
10 N RCS 
CFRP propellant tanks, titanium liner. 
The third stage will be integral with the samples holders (figures 11 and 12). 
In order to increase the compactness of the rocket, the main nozzle is facing front. During the ballistic 
phase 2 – 3, the third stage will perform a half turn with the RCS thrusters before main engine firing. 

Launcher fairing Dynamic envelope: 4.7 m 

Aeroshell 3.6 m dia. 

Interplanetary 

module 
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Performance evaluation 
The following table provides the overall Delta V computation: 

Stage 1 Dry mass 250.00 g0Isp 2696.925 

 Propellant 2500.00 Delta V (m/s) 2395.31 

Stage 2 Dry mass 100 g0Isp 2893.065 

 Propellant 1000 Delta V (m/s) 3424.04 

Stage 3 Dry mass 75 g0Isp 3059.8  
Propellant 250 Delta V (m/s) 4486.67 

LOM kg 4935 Delta V total (m/s) 10237.55 

LOM: Lift off Mass. All masses are in kg. 
 
The Total Delta V provides ample margin for rendezvous manoeuvres. This margin can be traded-off for 
payload; for example, using 185 kg of propellant will provide a total Delta V of 8327 m/s and 65 kg more 
payload. 
The third stage minimum dry mass include 40 kg for tanks and engines (16% of the propellant mass), 20 kg 
for the samples and samples holders and 15 kg for avionics, guidance RF link and energy source. 
 

Rocket ascent trajectory: 
The following table provides the burning time and maximum acceleration of each stage  
 

Stage 1 burn time s 90 

Mean Flowrate kg/s 27.78 

Thrust N 74914.58 

Gamma max m/s2 43.43 (4.43g) 

Stage 2 burn time s 60 

Mean Flowrate kg/s 16,67 

Thrust N 48218 

Gamma max m/s2 108.35 (11.05 g) 

Stage 3 burn time s 1873,34 

Mean Flowrate kg/s 0,16 

Thrust N 490 

Gamma max m/s2 0.15 (0.02 g) 
 

The total burn time is 2023 s (2080 s with ballistic phase). During this time, the orbiter will cover 14 900 km. 
It will not be in visibility of the rocket at ignition, hence the interest of one or several small relay satellites 
at higher altitude (e. g. 10 000 to 30 000 km, preferably circular orbit), insuring also the navigation. At least 
two satellites shall be visible from the lander and balloon / rocket at a time. Four satellites may be better 
than three. 
 

The rocket shall fit under the aeroshell (4.7 m dia.). A very compact design shall be retained. 
The first stage volume shall be 1.67 m3 to accommodate 2.5 tons of propellant (fortunately, the solid 
propellant density is1800 kg/m3). This will fit in a vessel 2 m long and 1.15 m in diameter (with partially 
immersed nozzle). 
The nozzles will use Flexseal TVC (Thrust Vector control) with electromechanical actuators.  
Parachute: 
The Rocket / balloon assembly / hydrogen storage will weigh around 6 tons. The parachute size will be 
similar to the one of an Apollo command module. 
 

Lifting balloon 
The balloon capacity must be at least 4000 m3 (at 0.1 MPa) in order to lift 5 tons. This corresponds to 4.84 
m3 (341.3 kg) of liquid hydrogen. Liquid hydrogen is preferred to liquid helium. It is easier to store during 
interplanetary flight and easier to evaporate by chemical heating (LOX GH2 reaction) as the inflation must 
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be performed rapidly (in order of 3 minutes) to guarantee safe deployment. When fully inflated, the 
balloon will be a 20 m diameter sphere. 
The balloon inflation will start while the parachute is fully deployed. The parachute jettison time shall be 
fixed by further studies. Jettison while balloon inflation is still partial may be preferred in order to avoid the 
chafing of balloon envelope by the parachute lanyard. 
 

The following table gives the characteristics of hydrogen storage. 
 

Volume liquid m3 4,84  Gas m3 4000  

specific gravity kg/m3 70,516 Mass kg 341,30 

LH2 Sphere radius (10% ullage) m 1,08 Outer sphere dia. (m) m 2,26 
 

The power required to heat 341 kg of hydrogen from liquid state to ambient is very high: 8 MW. This is 
roughly the power of an upper stage cryogenic engine gas generator. It will work at a mixture ratio of 1 (as 
engine gas generator) and the flow will diluted by the rest of liquid hydrogen. The H2 and O2 tanks will be 
pressurised with helium. 
 

Enthalpy H2 liquid kJ/kg 1,224 

Enthalpy H2 gas NTP kJ/kg 4233,5 

Duration  s 180 

Total H2 Flow kg/s 1,90 

H2 gas stoichiometric flow kg/s 0,07 

gas generator power kW 8025 
 

LH2 tank thermal design 
 
Before and during launch the LH2 tank will be insulated by a combination of lightweight vacuum insulation 
(evacuated honeycomb) and superinsulation. The cooling will be provided by a helium loop. 
In space, thermal losses will be reduced below 20 W by the combination of superinsulation and low thermal 
conductivity supports. The active refrigeration will be provided by a two stages cryocooler, providing 20 
Watt at 20 K and requiring 2 kW of electrical power. 
 
Balloon / rocket Earth launch configuration 
The launch configuration will include an interplanetary cruise module, including chemical and electric 
propulsion modules (figure 10). The overall power will be in excess of 25 kW in order to supply EP. 
EP will be provided by 5 x 5 kW HET thrusters. The cruise module will be extrapolated from a 
telecommunications satellite platform. 
The vehicle will use the full capacity of Ariane 64, i. e. 11 tons HEO (or equivalent trajectory). A chemical 
firing at Earth perigee (450 – 600 m/s) will be sufficient to inject the vehicle toward Venus. 
As a fall-back solution, a composite formed by the cruise module and a cryogenic propulsion module can be 
launched in LEO (overall mass 23 tons).  
A second chemical burn will insure planetary capture (the mass after capture will be 6835 kg) and the orbit 
will be circularised by EP and / or aerobraking. A third chemical firing will provide entry. 
The aeroshell will provide a ballistic coefficient close to the Soyuz one (6 -7 tons for 17.4 m2). 
In order to save weight, the aeroshell will be load bearing, made of a thin shell of SiC-carbon composite 
reinforced by a C – SiC truss with a radiative superinsulation. 
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Figure 10: Launch configuration 

8. Sample Return Orbiter 
The orbiter will be very similar to the balloon / rocket interplanetary module: a chemical propulsion module 
and a HET propulsion module. The orbit acquisition will be the same: 

 Chemical burn leading to a highly elliptical orbit: 

 Transition to circular 300 km orbit by Electric Propulsion (HET). 
The capture of the third stage of the rocket will be performed by a harpoon / robotic arm locking in the 490 
N engine nozzle acting as a guide (figure 13). 
The third stage will be integrated in the re-entry shield. 
The return to Earth will be performed in the following way: 

 EP will be used to reach a very high elliptical orbit. 

 A small chemical burn at periapsis will inject the orbiter toward Earth. 

 EP may be required for Delta V increase in interplanetary space. 

 EP will be used to decrease the hyperbolic velocity before Earth arrival, thus easing the design of 
re-entry shield. 
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Figure 11 : Third stage front view (top) and side view 

9. Conclusion 
The proposed Venus Sample Return mission aims at reducing the risks associated to this mission. It involves 
the launch of two to three Ariane 6, the heaviest payload being the balloon / rocket assembly. 
The multiple lander approach offers two advantages: 

 It provides more scientific value by returning several types of soils. 

 It lowers the risk associated to a single sample loss. 
The technologies studied in the frame of this proposal could be used on less ambitious missions: 

 Venus atmosphere sample recovery only (no lander). 

 Extended life lander without sample return (the advanced thermal insulation concept could be 
combined with a RTG and a pulse tube cooler to provide months of operation on Venus surface). 

 Venus low altitude UAV, providing an extended photographic aerial survey, using the advanced 
thermal insulation concept, allowing hours or days of operation in the very hot Venus atmosphere. 

  
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 Figure 12 : Rendezvous and sample recovery 

 
Figure 13 : Third stage capture and samples recovery 
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