

Heliophysics Missions in China

National Space Science Center Chinese Academy of Sciences

2014-08-02

Outline

- **♦** Meridian Project
- Kuafu
- ◆ MIT: Magnetosphere-Ionosphere-Thermosphere Coupling
- ◆ **SPORT:** The first CME Imager from out-of-Ecliptic Plane
- ◆ **ASO-S:** Advanced Solar Observatory in Space
- ◆ **DSO:** Deep Space Observatory
- ◆ CE-3: EUV Imager

Chinese Meridian Project

It is a Chinese multi-station chain mainly along 120°E to monitor geospace environment, starting from Mohe, the northernmost city in China, through Beijing Wuhan Guangzhou and extended to Chinese Zhongshan station in the Antarctic.

Official Kick-off

15 stations, 38 observing sites and 94 instruments: after 58 months of construction, one of the world's most extensive ground-based system for geospace weather monitoring passed the national review for acceptance in Beijing on October 23, 2012 to officially start data collection and scientific research.

Station Distribution

Key Parameters

- Chinese Meridian Project is in full operation.
- Up to July, 2014, it has collected 2.4 TB of scientific data for 64 space environment key parameters.
- More than 150 peer reviewed paper have been published.

7

International Space Weather Meridian Circle Program (IMCP)

To connect 120°E and 60°W meridian chains of ground based monitors worldwide, in order to provide a global picture of unfolding space weather events.

- ➤ The kick-off fund has been secured from the Ministry of the Science and Technology of China (2013).
- ➤ The joint research centers between China/Russia, China/Brail will be supported by the Chinese Academy of Sciences (2013-2015).
- The discussions with other countries including Canada, USA, Australia etc. are underway.

KuaFu

Solar Storm Aurora and Space Weather Exploration

- NSSC and ESA signed Letter of Intent on KuaFu cooperation:
 Oct. 19, 2012, But ESA ministerial meeting did not approve
 KuaFu B: Nov. 2012
- Discussions with Russia about possible collaboration on KuaFu were initiated, but without solid output.
- Chinese Academy of Science has decided to put the KuaFu project on hold in May, 2014.

Scientific Objectives:

- ✓ Investigate the origin of the outflow ions and their acceleration mechanisms
- ✓ Understand the impact of the outflows ions on dynamic processes in the magnetic sphere, including magnetic storm development
- ✓ Characterize the ionosphere and thermosphere storm driven by magnetic storms
- ✓ Discover the key mechanism for the magnetosphere, ionosphere and thermosphere coupling

Period_MA/ Period_ITA=9:1

Spacecraft	ITA	ITB	MA	MB
inclination	90°	90°	90°	90°
perigee	500 km	500 km	1 Re	1 Re
apogee	1500 km	1500 km	7 Re	7Re

- Concept Study was supported by CNSA in 2009-2010
- Pre-study has been supported by CAS (2011-2014)
- MIT Forum was successfully held in Beijing on October 31 November 1, 2013. More than 40 scientists from USA, Canada, UK, Germany, Romania and China attended the forum.
- The mid-term evaluation about the pre-study on MIT was carried out in April, 2014.

Solar Polar ORbit Telescope (SPORT)

➤ Science Objectives:

SPORT will be the first mission to image the propagation of CME continuously off the ecliptic plane.

- ✓ Imaging & tracking interplanetary CMEs propagation
- √ Observation on solar high latitude area

Orbit realization	solar polar orbit (with the gravity assist of Jupiter)
Inclination	>72 °
perihelion	0.7AU
aphelion	3~5AU

Scientific Payload

CME and	1	Synthetic aperture radio imager	
ICME imaging	2	Heliospheric imager	
	3	Large angle coronagraph	
Solar Imaging	4	Solar magnetograph	
	5	Solar ultraviolet imager (121.6nm)	
Particle detectors	6	High energy particle detector	
	7	Heavy ion composition detector	
	8	Solar wind plasma detector	
Wave detectors	9	Fluxgate magnetometer	
	10	Low frequency electromagnetic wave detector	
	11	Solar radio burst detector	

- Concept Study was supported by CNSA in 2009-2010
- Pre-study has been supported by CAS (2011-2014)
- The Forum on the Solar Polar Orbit Telescope (SPORT) was held at ISSI-BJ on November 24-25, 2013. A total of 30 leading scientists from 7 countries participated in this Forum.
- The mid-term evaluation about the pre-study on SPORT was carried out in April, 2014.

Advance Solar Observatory in Space (ASO-S)

Scientific Objectives

- Simultaneously observe non-thermal images of hard X-rays, and formation of CMEs, to understand the relationships between flares and CMEs
- Simultaneously observe the full disc vector magnetic field, the energy release of solar flares, and the initiation of CMEs, to understand the causality among them
- Observe the responses of solar atmosphere to solar eruptions, to understand the mechanisms of energy release and transportation, as well as the patterns of dynamics
- Observe solar eruptions and evolution of solar magnetic field, to provide clues for forecasting space weather

Payloads

Full-Disc Vector Magnetograph (FMG)

PI: Yuanyong Deng (NAOC)

FOV: 33'

Diameter: 14 cm

Resolution: 1"

CCD: 4K*4K

Wavelength: FeI532.4nm

FWHM of Filter: 0.1Å

Time Resolution: 2min

Accuracy of B₁: 5 Gs

Payloads

Lyman-alpha Telescope(LST)

PI: Hui Li (PMO)

	SCI	SDI
Diameter	60 mm	40 mm
Wavelength	121.6±10.0 nm	121.6±10.0 nm
FOV	$1.1-2.5~{ m R}_{\odot}$	$0.0-1.2~{ m R}_{\odot}$
CCD	2K*2K	4K*4K
Resolution	2.35"/pixel	0.56"/pixel
Exposure	1-2 s	0.2-1 s
Time interval	4-10 s	1-5 s
Attitude Acc.	1.0-2.0"/10s (rms)	1.0-2.0"/10s (rms)

Payloads

Hard X-rag Imager (HXI)

PI: Jian Wu (PMO)

Energy range: 30-300 keV

Energy Res.: 3%@662keV

Crystal: LaBr₃

Resolution: better than 6"

Effective area: 100 cm²

Time Resolution: 0.5 s

FOV: 1°

Mission Requirements

- Orbit: solar synchronous
- Attitude: 700-750 km
- Attitude Control: 3-axis stability
- Pointing accuracy: 0.005°/s
- **Stability**: 1-2"/10s
- Payload Mass: 250 kg
- **Data**: 140 GB/day
- Launch date: 2021
- Lifetime: 4 years

- Pre-study has been supported by CAS (2013-2015)
- The Forum on the ASO-S will be organized by ISSI-BJ by the end of October this year
- Final selection will be made end of next year

Deep Space Observatory (DSO)

Scientific objectives:

1. To understand the nature of the solar magnetic field: @0.1-0.15 arc sec, pol. degree of 2×10⁻⁴ and 30s

2. To explore the mechanism of solar activity: with continuous observations in γ-ray, X-rays, EUV, visible and radio bands

3. To provide physical basis for solar activity prediction

NSSE

Testing process of MFT in the laboratory

装卡后1#主镜干涉1#主镜干涉图:面 2#主镜干涉图: 图:面形优于λ/35 形优于λ/45 RMS

Test result ($@\lambda = 633$ nm)

Main lens: $\lambda/35$ RMS

Autocollimetor: $\lambda/30$ RMS

Image lens: $\lambda/35$ RMS

 $\lambda/17$ RMS whole system:

(by Sen Wang et al.)

- Supported by CNSA for pre-study since 90's as a mission called SST
- Re-proposed to CNSA as a major mission in the overall program for deep space exploration in 2011
- It was approved at the level of CNSA and now waiting for approval from higher governmental level for fund

CE-3 EUV - Imager

CE-3 was landed on the lunar surface in Dec., 2013

First Image of the Earth's plasmasphere from the moon.

- More than 1000 pictures of the plasmasphere has been taken.
- Extensive data analysis and modeling are currently underway.
- A unique opportunity to observe the plasmasphere during

