ILWS related activities in Germany

Moscow, August 2, 2014

Outline

- Update based on presentations of German ILWS activities in Vienna 2013 (after Prague, Bremen, Beijing)
- Recent developments and achievements
 - Sunrise 2
 - Solar Orbiter
- Ongoing and further German contributions to ILWS Missions
 - SOHO, CLUSTER, STEREO, SDO, Themis
 - Bepi Colombo, Solar Probe Plus, Proba-2

SUNRISE-2: a Solar balloon telescope:

- Solar telescope in the gondola of a stratospheric balloon
- With ist 1-m primary mirror the largest solar telescope so far to leave the ground, made in Germany+Spain; Gondola: US
- > Altitude of 37 km over Arctic Circle: UV, no seeing, no night
- Simultaneous observations of 2 science instruments:
 - SuFI: UV filter imager, 200-400nm (Gandorfer et al., 2011)
 - IMaX: Vector-Magnetograph, Fel 525.02 nm (Martinez Pillet, 11)
- 1st science flight in June 2009 (solar activity minimum)
- 2nd science flight in June 2013 high solar activity (MinMax)

First High-Resolution Images in the 279 nm Mg Line

- Good knowledge of chromosphere essential to understand how the outer solar corona is heated
- Solar structures look similar in Ca and Mg images
- Contrast of Bright Points in Mg much higher than at other wavelengths
- Structures in Mg images appear more smeared and smoothed than in Ca

Kilo Gauss Fields Resolved

- Kilo Gauss fields assumed for magnetic bright points since invention of line-ratio method (Stenflo, 1973)
- Inversions of Sunrise data give:
 - kilo Gauss fields without the need to introduce magnetic filling factor
 - temperature enhancement that agrees with empirical flux-tube models

Sunrise finally resolved magnetic bright points even in the quiet Sun

Sunrise-2: Bright Point contrasts

- First measurements of BP contrasts in the UV
- Higher contrasts and broader contrast distributions at shorter wavelengths

High BP contrasts confirm assumption that BPs are important for irradiance variantions in the UV (and possibly for the climate)

Solar Orbiter

- Objectives: Observation of the Sun from the photosphere to the solar wind
- Launch scheduled for July 2017
- Nom. Mission Operations mid 2027 (incl. transfer)
- As close to the Sun as 0,28 AU, up to 34° inclination
- Payload suite consisting of 10 remote-sensing and in-situ-instruments
- Selected German Instrumentation:
 - Polarimetric and Helioseismic Imager (PHI, MPS)
 - parts of Energetic Particle Detector (EPD, Univ. Kiel)
 - parts of EUV-Imager, EUV-Spectrometer, Coronograph (EUI, SPICE, METIS ; all MPS)
 - parts of Spectrometer Telescope Imaging X-rays (STIX, AIP)

Solar Orbiter - German contributions 1

Solar Orbiter - German contributions 2

Co-PI: Dr. U. Schühle (MPS), Dr. L. Teriaca (MPS)

HRI Lyman-alpha Telescope

Co-I: Dr. U. Schühle (MPS)

Primary Mirror and Mirror Coating

Co-I: Prof. S. Solanki, Dr. L. Teriaca (MPS)

Image Sensor and Read-out electronics for the UV-Sensor

More German Contributions to ILWS

- · On-Going participation to missions in Orbit
 - SOHO (several instruments)
 - Cluster (several instruments)
 - STEREO (instrument parts)
 - SDO (local data center)
 - Themis/Artemis (magnetometers)
- Instrument development and mission preparation
 - BepiColombo (magnetometer)
 - Solar Probe Plus (Software development for WISPR)
 - Proba-2 (instrument parts)

CGAUSS: Coronagraphic German and US SolarProbePlus Survey = German Contribution to the Wide-field Imager for Solar Probe (WISPR) for the Solar Probe Plus Mission (NASA)

WISPR on Solar Probe Plus

- Wide-Field Imagers of the Heliosphere (95° radial x 58° transverse, inner FOV limited to 13.5° from Sun center
- Visible Light Observations (~500-700 nm)
- Simple Telescopes: No Mechanisms Other Than One-Shot Door
- Next-Generation 2K x 2K APS Sensors

00:09 UT, 15 February 2008

CGAUSS

5 00 um

CGAUSS Team

DLR-NASA (Implementing Arrangement): 03/2012-09/2026

Establishing the European SPP data archive

National Collaborators: Ralf Srama and Team @ Uni Stuttgart

More German Contributions to ILWS

- On-Going participation to missions in Orbit
 - SOHO (several instruments)
 - Cluster (several instruments)
 - STEREO (instrument parts)
 - SDO (local data center)
 - Themis/Artemis (magnetometers)
- Instrument development and mission preparation
 - BepiColombo (magnetometer)
 - Solar Probe Plus (Software development for WISPR)
 - Proba-2 (instrument parts)