Mercury's interior: New views from MESSENGER

Steven A. Hauck, II, Paul K. Byrne, Catherine L. Johnson, Jean-Luc Margot, Erwan Mazarico, Stanton J. Peale, Roger J. Phillips, David E. Smith, Sean C. Solomon, Maria T. Zuber

Mercury system science

Driving questions

What is Mercury made of?

How did Mercury evolve?

MESSENGER happened, and now we know...

- Global shape, topography, and gravity
- Internal magnetic field geometry & timing
- <u>Much</u> more contraction than once thought
- Strongly chemically reduced planet
- Heat production, with lots of potassium
- Volcanism
- So what is our picture of Mercury's interior now?

Direct observations: Geochemistry

Heat production

	Mercury	Chondritic
K (ppm)	1288 ± 234	544
U (ppb)	106 ± 11	7.8
Th (ppb)	155 ± 54	30
Th/U	1.5 ± 0.5	3.8

- Much more heat production than once thought.
- Sub-chondritic Th/U

Highly chemically reduced surface rocks → reduced core

Chemically reduced

Fe	S
~ 1.5 wt %	~2 wt %

Peale Experiment

- Gravity + spin state
- Normalized polar moment of inertia

 $-C/MR^2 = 0.349 \pm 0.014$

 Solid, librating shell fraction of MOI

 $-C_{\rm m}/C = 0.424 \pm 0.024$

Modeling Interior Layering

- Range of layer thicknesses
- Plausible ranges of rock and metal densities are known
 - Density is a function of temperature, pressure and composition
 - Self-gravity and self-compression
- Search for models that satisfy:
 - Bulk density and mean radius.
 - Non unique = we look at millions of models
- Calculate moments of inertia to compare with measured values

Internal structure

Models with additional constraints from metal:silicate partitioning of S and Si (Chabot et al., 2014)

Is there a solid FeS layer in the core?

Role of inner core size

Stan Peale (1937-2015)

Core crystallization

But what does it all mean?

Constraints on internal activity

- Radial contraction since LHB: ~5-7(+) km
- Mag field timing: 3.7-3.9 Ga & today.
- Resurfacing: HCT ~4.1-4.0 Ga , NVP/Caloris ~3.8-3.55 Ga, some limited younger stuff (e.g., Rachmaninoff ~1 Ga)

- Explosive volcanism: 3.9 Ga \rightarrow < 1 Ga
- Surface compositions: suggest lava liquidus temperatures (@ 1 bar – higher at depth) of ~1723 K for HCT and probably high degrees of melting.
 - Several distinct lava compositions, including Caloris interior and NVP, and distinct older compositions, e.g., HMR, southern hemisphere heavily cratered terrains, etc.

Thermal evolution

- Temperature drives most things
- Through temperatures and rate of heat loss the thermal evolution is intimately connected to:
 - -Major tectonic activity
 - -Major volcanic activity
 - -History of magnetic field

Generic thermal evolution

3-D Picture

 Note the small scale of upwellings and thick
lithosphere – melt production could be widely
distributed, though perhaps not typically
voluminous

• Questionable mixing efficiency due to small scale of cells and the low convection velocities

Magnetic field results...

- Core cooling is slow, sustained thermal dynamo is very unlikely. Early and present day magnetic field is challenge. Requires one of the following:
 - Core solidification for ~3.7 Gyr
 - Transient early dynamo and more recent core restart due to solidification.
 - Lots of core heat generation
- Regardless, may rule out models with slow early mantle convection leading to core warming – ruling out at least some global expansion models

Future opportunities

- Mercury's obliquity
- Global Fe, Mg, S, Ca, etc inventory at geological scales
- Global gravity
- Global fine-scale topography
- Laboratory geochemistry and petrology to interior compositions
- Refining understanding of both
 - Age of magnetic field
 - Mechanism(s) of dynamo generation

