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Mercury system science




Driving questions

What is Fe-rich core
Mercury
made of?

Silicate mantle
How did
Mercury

evolve?




MESSENGER happened, and now we know...

- Global shape, topography, and gravity
 Internal magnetic field geometry & timing
« Much more contraction than once thought
« Strongly chemically reduced planet

« Heat production, with lots of potassium

* Volcanism

« So what is our picture of Mercury’s
interior now?



Direct observations: Geochemistry

Heat production Chemically reduced
I [T T
K (ppm) 1288 = 234 ~1.5wt % ~2 Wt %

U (ppb) 106 *= 11 7.8
Th (ppb) 155 =+ 54 30
Th/U 1.5=*0.5 3.8

* Much more heat
production than once
thought.

 Sub-chondritic Th/U
« Highly chemically
reduced surface rocks = reduced core

Weider and Nittler et al (2013)




Peale Experiment

 Gravity + spin state

 Normalized polar
moment of inertia

- C/MR? = 0.34910.014

« Solid, librating shell
fraction of MOI

-C,_/C = 0.424+0.024







Modeling Interior Layering

Range of layer thicknesses
Plausible ranges of rock and
metal densities are known

— Density is a function of
temperature, pressure and
composition

— Self-gravity and self-compression Inner Core
Search for models that satisfy:
— Bulk density and mean radius.

— Non unique = we look at millions
of models

Calculate moments of inertia to
compare with measured values

Outer Core




Internal structure
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Is there a solid FeS layer in the core?
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C/ me2 for spin evolution to observed position

Role of inner core size
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Core crystallization
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But what does it all mean?



Constraints on internal activity

Radial contraction since LHB: 51
~5-7(+) km @ High Mg-region resurfacing(?)
Mag field timing: 3.7-3.9 Ga & Crusive volcanism

today. ] I

Explosive volcanism

Resurfacing: HCT ~4.1-4.0 Ga, | |
NVP/Canris ~3.8-3.55 Ga, some Accumulation of visible contraction

limited younger stuff (e.g., —

Rachmaninoff ~1 Ga) 45 35 25 15 05
Time [Ga]

Explosive volcanism: 3.9 Ga 2 <1 Ga

Surface compositions: suggest lava liquidus temperatures
(@ 1 bar — higher at depth) of ~1723 K for HCT and probably
high degrees of melting.

— Several distinct lava compositions, including Caloris interior and
NVP, and distinct older compositions, e.g., HMR, southern
hemisphere heavily cratered terrains, etc.



Thermal evolution

« Temperature drives most things

 Through temperatures and rate of
heat loss the thermal evolution Is
Intimately connected to:

—Major tectonic activity
—Major volcanic activity
—History of magnetic field



Temperature [K]

Generic thermal evolution
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3-D Picture

 Note the small
scale of upwellings
and thick
lithosphere — melt
production could
be widely
distributed, though
perhaps not
typically
voluminous

 Questionable
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Magnetic field results...

« Core cooling is slow, sustained

T aR> 5k || o0 & thermal dynamo is very unlikely.
—— AR, > 35 km}) e+ Early and present day magnetic
g field is challenge. Requires one
£ of the following:
a1 1600 é — Core solidification for ~3.7 Gyr
0 1000 2000 3000 4000 © - Transient early dynamo and
Time [Myr] more recent core restart due to

solidification.
— Lots of core heat generation

« Regardless, may rule out models with slow early
mantle convection leading to core warming - ruling
out at least some global expansion models



Future opportunities

« Mercury’s obliquity

- Global Fe, Mg, S, Ca, etc inventory at
geological scales

« Global gravity

 Global fine-scale topography

« Laboratory geochemistry and
petrology to interior compositions
« Refining understanding of both
— Age of magnetic field
— Mechanism(s) of dynamo generation



Graphic courtesy P. Byrne
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