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ABSTRACT

From the early studies to the actual design of a plane-
tary rover mission, the knowledge of the type of terrain
that will be encountered is crucial. Usually, a reference
terrain is defined to help the design of the rover subsys-
tems, knowing that the terrain will be different during the
actual mission. Furthermore, once the landing site is se-
lected, the evaluation of the slopes is essential to measure
the performance of an Entry, Descent and Landing Sys-
tem.

The main goal of this paper is exposing the method used
to measure the slopes distribution of a terrain from its
Digital Elevation Maps and, through this, explain the re-
quirements set for the reference terrain for Mars mission.
At the end, there are presented methods to generate sam-
ple terrains to be used for rover design and navigation
verification.

1. ADIRECTIONAL SLOPE METHOD

In order to proceed with the mission design, it is funda-
mental to have an idea of the terrain on which the rover
is going to land. To evaluate the performance of an EDL
system, it is crucial to have a measurement of the slopes
for the baselength of interest, while rover missions need
a detailed knowledge of the terrain for navigation on-site
and for rover’s development and testing. Since knowl-
edge a priori of the terrain is not possible in general,
an accurate simulation is crucial for the evaluation of the
mission performance..

For the generation of the reference terrain, ESA has de-
fined requirements for various missions like the ExoMars
rover, the EDL demonstrator or the Mars Sample Fetch-
ing Rover study.

The primary parameters associated with DEM which
describe terrain surfaces are slopes, aspects and rocks.
While the rocks distribution law has been defined and
verified over several placed on Mars by Golombek et al
[GO3], the slopes studies never output an model to be
used for terrains generation.

In this section two different algorithms to compute slopes
are presented. In particular it is defined and explained a
new slopes measurement method, the so-called Adirec-
tional Slope Method (ASM).
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Figure 1. Visual description for ASM.

It is also given an analysis via ASM of some landing site
candidates for MSL.

1.1. Adirectional Slope Method

Def. The adirectional slope in a point is given by the
absolute value of the maximum slope computed around
the point, measured at a specific length scale.

To compute the adirectional slopes of a given DEM, the
statistic software R [R] has been used.

The Adirectional Slope Method ASM works as follows
(see Figure 1 for a visual description): set a baselength
L and an increment angle o. For each point P; ; of the
DEM, consider a circular window of radius L centred in
P; ;. For every point FP; ; identified by the increments
of width « on the circumference , ASM searches for the
point P ; on the DEM which is the closest one to F; ;
and calculates the slope between P, ; and the centre of the
circle P; ;. Finally it associates to the F; ; the maximum
slope value.

The angle « and the baselength L both depend on the
resolution of the DEM. As a general guideline, o = 15°
is a good value for the angle, while, if possible, for the
baselength it is recommended to pick L greater than the
DEM resolution.

A high level description of the algorithm is given by:



numPoints = 27/«
for ¢ = 0 until number of columns on DEM
for 5 = 0 until number of rows on DEM
for n = 0 until numPoints
k = round[i 4 (L /resolution) cos (na)]
{ = round[j + (L/resolution) sin (nao)]
distance = dist[(%, 5), (k,1)]
slope(n) = arctan((z(¢,7) — z(k,1))/dist)
slopes(i, j) =max(slope)

1.2. Steepest Neighbour

The Steepest Neighbour method (SN) is a slopes
computation method already presented in literature
(see [Gu9s)).

Let the radius L be equal to the resolution of the DEM.
SN picks the steepest slope among the eight adjacent
points to F; ;, considering the real distance on the grid,
i.e. considering that the diagonal distance is longer and
that vertical and horizontal spacings might be different
from each others. The value is then assigned to the cen-
tral point.

SN can be extended to larger values of L considering the
8 points as in Figure 2 (b).

While ASM and SN coincide when L equals the DEM
resolution (they consider the same set of 8 points), at
large base scales (e.g. 100m) SN misses a number of
higher slopes, systematically minimizing the adirectional
slopes value.

As it is recommended to use a base scale much higher
than the DEM resolution, SN is not recommended to be
used as a slopes computation method.

resolution  Spacing ( > resolution)

. . .
Spacing ( = resolution)
<>
o o | o
. L] .
e o | o
o o | o
. . .
(a) (b)

Figure 2. Steepest neighbour for L=resolution (in (a))
and L > resolution (in (b)).

2. REQUIREMENTS FOR THE REFERENCE
TERRAIN

In this section are presented the results obtained by ap-
plying ASM to the Mars Hi-Resolution DEM of four po-
tential landing sites for MSL. The terrains available can
be downloaded in the USGS Planetary GIS Web Server -
PIGWAD !.

Thttp://webgis.wr.usgs.gov/ftphirise/

All the DEMs are built via the HiRISE stereo cameras on-
board the Mars Reconnaissance Orbiter and have a reso-
Iution of 1m. In order to cope with computer memory
limitations though, the DEMs have been sampled to 5
meters resolution.

In Section 3 it is shown that these resamplings do not af-
fect significantly the assumptions made on the terrains in
terms of difficulties and slopes distribution.

Note that at 5m resolution the roughness induced by
rocks and irregularities of the terrain are mostly smoothed
out. Rocks though, do not have an impact on slopes com-
putation as long as navigability is concerned, since they
can be avoided by the rover.

As a consequence in particular, even the reference terrain
can be given with a resolution of 1m, and at a later stage
it can be refined through interpolation techniques and the
rocks distribution model can be added (cfr. Section 4).

The four landing sites analysed in this document with es-
sential information for ExoMars project are:

e Gale Crater;

e Holden Crater;

e Mawrth Vallis Landing site 2;
e Mawrth Vallis Landing Site 4.

The analysis of the DEMs is done importing the geo ref-
erence files on the Geographical Information System
(GIS) GRASS ([GRASS)]), and successively running the
adirectional slope algorithm on the statistical enviroment
R ([RD.

Latitude and longitude of the four landing site candidates

min.latitude: -4.6757241932102
max.latitude: -4.2514300655544
westernmost long: 137.4239807
easternmost long: 137.5664978

Gale Crater:

min.latitude: -26.4688633214514
max.latitude: -26.0707102512555
westernmost long: 324.8796082
easternmost long: 325.0280762

Holden Crater:

min.latitude: -26.4688633214514
max.latitude: -26.0707102512555
westernmost long: 324.8796082
easternmost long: 325.0280762

Mawrth Vallis site 2:

min.latitude: 24.6346322372157
max.latitude: 25.0815451539359
westernmost long: 339.4687195
easternmost long: 339.6321106.

Mawrth Vallis site 4:

Figure 3 depicts the four images for these sites on Mars.
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Figure 6 Mars HiRISE Hi-Resolution Topograplty of four possible landing sites

Figure 3. Candidates landing sites.

ESA focused on slopes computed over Sm and 100m dis-
tance. The assumption was made as well that over 5m,
the terrain is fairly flat.

The objective was to define a known probability density
function at 5m and at 100m that would enclose the dif-
ficulties of the four candidate landing sites of MSL. The
model aimed to be used for describing a reference terrain
to be used for navigation and system design.

2.1. Slopes distribution over Sm

Figure 4 shows that, although the slopes distributions
over the four terrain are quite different from each other,
they do carry some similar features, namely, the average
slope and the behaviour towards higher slopes.

As a probabilistic model to describe the slopes be-
haviour, a Chi-square distribution of mean 7 seems to
be a good match, of course accounting on some margin.
The Chi-square density in fact resembles the shapes
of the slopes density of the four terrains, being more
conservative especially on low slopes. Since slopes
higher than 20° are rare and can be avoided by the rover
while travelling, low slopes are the most relevant for
navigation. In particular, it is meaningful to stop at the
Chi-square value of 21.5° for the 99.7th percentile for
the reference terrain, although it is lower than the real
terrains values.

Slopes values at the 99.7th percentile

Gale Crater 37.54
Holden Crater 20.12
Mawrth2 31.47
Mawrth4 26.06
Chisq 21.5

2.2. Slopes distribution over 100m

At 100m scale, a Rayleigh distribution with parameter
value of 3.5 seems to offer the best match. At this base-
length, the slopes of the four terrains lose their common
patterns, so the Rayleigh has been chosen for its conser-
vativeness, as 75% of the slopes for the four analysed
terrains stay below the third Rayleigh’ quartile:

Slopes values at the third quartile

Gale Crater 4.67
Holden Crater 3.51
Mawrth2 5.48
Mawrth4 3.2
Rayleigh 5.82

Figure 5 compares the slopes density distribution of the
four terrains against the Rayleigh distributions. Ob-
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Figure 4. Slopes distribution for the four landing sites
compared with Chisq.
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Figure 5. Slopes distribution for the four landing sites
compared with Rayleigh.

serve that Gale and Mawrth2 present higher slopes than
the chosen Rayleigh model, as it is showed in the table

Slopes values at the 99.7th percentile

Gale Crater 21.5
Holden Crater 11.4
Mawrth2 14.5
Mawrth4 10.8
Rayleigh 12

These values though seem to correspond at specific
restricted areas on the terrains (irregularities, craters),
which should be avoided as much as possible when fit-
ting the landing ellipse, and as well by the rover while
travelling.

2.3. Summary

Here the summary of the requirements for the reference
terrain:

Reference terrain requirements

maximum slope (99.7th perc): 21.5°

5m baselength . e
Chi-square distribution

maximum slope (99.7th perc): 12°

100m baselength ) SO
Rayleigh distribution

3. COMPARISON BETWEEN 1M RESOLUTION
AND 5M RESOLUTION

The analysis on Figure 6 and 7 have been performed on
a 3km sub-DEM of Mawrth2 and Gale. On these sub-
DEM, there is no significant difference between the com-
putations performed with Sm and 1m resolution respec-
tively.

This means that the selected subsets of the terrains are
fairly smooth. The assumption is that the high fre-
quencies of a terrain are provided by the rocks. Other
larger hazards are not frequent and would be detected and
avoided by the navigation system.

Note that for L = 100m all the difference will be
smoothed out by the division by L.

4. ROCKS DISTRIBUTION

From data of the Viking landing sites, Golombek et Rapp,
1997 [G97] found that the size-frequency distribution of
rocks could be fit with exponential functions. The cumu-
lative fractional area covered by rocks of diameter greater
than a given D is given by:

F(D) = kexp(—q(k)D)
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Figure 6. Comparison over a 3km sub-DEM of Mawrth2,
Sm baselenght.
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Figure 7. Comparison over a 3km sub-DEM of Gale, Sm
baselenght.

where k is the total rock coverage (estimated from ther-
mal differencing techniques), ¢(k) governs how abruptly
the area covered by rocks decreases with increasing di-
ameters and the average rock diameter D is the average
of the horizontal length of the rock long axis and the hor-
izontal length of the rock short axis (more correct than
apparent width, see [G03] pg. 27-5,6).

The value ¢(k) is empirically approximated by

q(k) = 1.79 4+ 0.152/k,

while for £ ExoMars has been considering up to now
6.9% of rock abundance for its reference terrain, recog-
nizing that on Mars we can find locally much higher rock
abundance.

4.1. Cumulative number of rocks

Many engineering applications prefer the cumulative
number of rocks with diameter greater than D, rather than
the cumulative area covered by them.

The cumulative number of rocks for m? larger or equal

than a given diameter can be derived via numerical inte-
gration of the cumulative fractional area, i.e.

F
ND)= | —.
p area

Now, given the total rocks coverage and the cumula-
tive fractional area, N (D) gives rise to a deterministic
model. But for modelling purposes the rocks are thought
to be distributed probabilistically on the surface, and it
is needed to know which is the probability of having n
rocks of a given diameter over a given area. Golombek
et all. deduced in [GO03] that rocks are scattered over a
surface according to a Poisson distribution. In particular
the probability of having n rocks over a surface of area S
is given by a homogeneous 2-dimensional Poisson spatial
process of mean N x S, i.e.

NT ST
ps.n(n) = . exp(—NS).

Note that assuming that the Poisson process is homoge-
neous implies that the mean N x S is not a function of
the position. In particular clusters or clumping are not
considered.

It follows that the probability that at least one rock of a
specified size is inside S is given by

1 —psn(0) =1—exp(—NS).

Finally, generating a Poisson field over a surface S is
straightforward: for every finite covering (A4;); of S,
compute the Poisson number of rocks and then scatter the
points uniformly over each A;. Since this holds for every
finite covering, it holds in particular for the all surface S.
Note the program “R” provides all the functions to dis-
tribute the rocks over the terrain according to poisson dis-
tribution.

5. REFERENCE TERRAIN

In recent years, generating realistic looking terrain has
been a point of interested for computer graphic special-
ists, video-games creator, geologist and other scientists,
therefore various software for terrain generation have
been launched on the market, most of which are based
on predefined real terrain or on fractal models. In our
case the main goal was generating a terrain which was
not only realistic, but mainly compatible with the ESA
requirements on slopes distribution described in Section
2.

Various methods have been investigated, from the most
trivial one of interpolate random values scattered over a
plane to more complex ones. The following Section pro-
vides a short description of the attempts that seemed more
relevant.

Rocks distribution according to Section 4 has been added
on a second stage, and was not involved in slopes com-
putation.



Figure 8. Terrain generated via Variogram model, 50cm
resolution, 570mx570m, with rocks.
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Figure 9. Slopes analysis of the terrain generated via
Variogram.

5.1. Terrain generation via Variograms

One of the most widely used tool for investigating the
structure of spatial data is the semivariogram (or vari-
ogram), which measures the average dissimilarity of the
data over a given area.

Variograms can be used to generate two-dimensional ran-
dom fields 2. The idea is the following: compute a vari-
ogram model from a Mars real terrain, then use the var-
iogram and kriging techniques the data at specific grid
location and generate different terrains which all have the
same (adirectional) variogram. In this way all the new
realisations should preserve the behaviour over the close
or far field.

There are several parameters to play with while generat-
ing a random field, but in general the statistical distribu-
tion of the slopes is not preserved in the process. Fig-
ures 8 and 9 show one of the best result obtained.

2R offers the package RandomFields to generate random fields via
variogram
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Figure 10. Manual modification of Mawrth2 DEM, 5m
resolution. Scaling factor: 1.4. Lifting parameter: 0.5m.

5.2. DEM modifications: rescaling and lowering

It is possible to intervene manually on a DEM to modify
the slope distribution. We have investigated two possi-
ble techniques to ’lower’ the curve of the slope density
and shifting it to the right, producing thus a terrain with a
larger amount of higher slopes.

The first technique (“rescaling”) fixes a reference height
h, say the mean of the heights of the terrain, and multi-
ply all the height values higher that & by a constant factor
while dividing all the height values lower than A by the
same factor. This procedure give rise to a bigger amount
of larger slopes, i.e. lowers the slopes density curve.

The second technique (“lowering”), identifies all the
points where the adirectional slope is less than a pre-
determined parameter s and lower the DEM in these
points by a fixed constant amount. In this way, part of the
lower slopes will disappear and the slopes density curve
will be shifted to the right.

Figure 10 shows the result of applying these two proce-
dures on Gale Crater, while Figures 12 and 13 show a
modified fractal terrain and its slopes distribution.

Note that, by modifying the parameters, is possible to ob-
tain different slopes distributions.

5.3. Fractal terrain

Real landscape features like rocks or mountains or coast-
lines can show a fractal behaviour, in particular they are
self-similar (i.e. the overall shape is resembling the shape
of one or more of their parts) and do have a fractal di-
mension. As a consequence fractal based terrain genera-
tion techniques can produce very realistic result and are
therefore widely used. Moreover, fractal algorithms are
fast and in general easy to implement.

The fractal terrain generator presented in this paper is a
3D-implementation of the midpoint displacement algo-
rithm. The algorithm starts with a 2x2 matrix of ran-
domly generated terrain heights, namely the coordinates
of the vertexes of a square on a plane, then iteratively



Figure 11. Terrain generated via fractal model, 50cm res-
olution, 129mx 129m, with rocks.

Figure 12. Fractal terrain modified. Scaling factor: 1.4,
lowering parameter: -0.3. The jumps are due to the
rescaling and can be smoothed.

it subdivides the square into four sub-squares and assigns
proper values to each of the new vertex (namely, the mean
of adjacent knots). Then it calls itself repetitively.

This algorithm indeed gives rise to realistically looking
terrain, but due to the randomness of the parameter, it is
not eligible as a general method to give a reference ter-
rain compatible with the requirements.

In general, slopes distribution for a fractal terrain tend to
underestimate greatly the Chi-square.

Figures 11 show an example of the terrain. Its slope dis-
tribution can be seen in 13 (along with the slope den-
sity curves of the terrain modified according to Sub-

Modifying a fractal terrain
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Figure 13. Slopes analysis of the modified fractal terrain.
Scaling factor: 1.4, lowering parameter: -0.3.

section 5.2).

Note that the slopes distribution might be improved re-
generating the terrain, or can be modified manually as in
Sub-section 5.2 (see Figures 12 and 13).

5.4. Manual terrain generation

Another attempt to generate the terrain was done gener-
ating a DEM point by point.

Assume the baselength L is equal to 5 and set the height
of an initial set of points. For every point P; ; belonging
to the set, the slope between P; ; and Py ; must satisfy
the two following conditions:

1. slope(; j), (k1) € x? (risp. Rayleigh),

2. slope; 5),(x,1y < maximum slope.

Thus, pick random Chi-square deviates from a Chi-
square distribution of mean 7 and define the heights of all
the points distant L from P; ; such that the slopes equal
such deviates. Then repeat for every point.

While iterating the algorithm, special care must be put on
the fact that the heights of every new point at distance L,
say P; ; + L, not only must satisfy all the slope condi-
tions relative to F; ;, but also to all the points of the kind
P; ; + 2L, i.e. points distant L from P; ; + L itself.
This care translates into a too numerous amount of con-
ditions to be written for every point of the DEM though.
For this reason, given P; ;, the algorithm has been simpli-
fied moving only “vertically” and "horizontally” on the
grid, i.e. for every P; ;, we only generated the heights
[)i+L7j and Pi,j+L~

Note. Let P;,, ¢ = 1,...,5 be 5 points of a DEM ar-
ranged like in Figure 14. Assume P; to be given and P,
Ps be generated from P, during the first step of the algo-
rithm and move to P to iterate the algorithm, generating
thus the heights of P, and Ps. It is needed that the slope
between P, and Py satisfies the conditions (1.) and (2.)
above.

Call z; the height of P;, then:

|2’3 —Z4| < |2’3 —Zl| + |21 —2’2‘ + |ZQ —Z4| =

= dist(tan slope, 5 + tanslope, , + tanslope, 4).

Thus if slope, 4 is taken to be a Chi-square deviate such
that

tan(slope, ;) = tan(slope max)—

— tan(slope, 3) — tan(slope; 5) (1)
then the conditions will be satisfied.

A high level description of the algorithm in this case is
given by:
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Figure 14. Algorithm for manual terrain generation.

slope_vector <— vector of random chisq(7) deviates
for ¢ = 0 until number of columns on DEM
for 7 = 0 until number of rows on DEM

if slope(; j),(i+1,5) does not satisfies (1)
recompute random deviate

else
ZitL,j+L = Zi,j+dist X slope(i7j)7(i+L7j)
Zij+r = zitdist X slopeg; 5y ;o 1y

This procedure though generates a terrain which satisfy
the slopes distributions, but it looks “folded”. For this
reason the DEM has been manually smoothed to obtain
finally the terrain in Figure 15.

1000

Figure 15. Manually generated terrain, 10cm resolution,
100m x 100m, with rocks. The height coordinate has been
rescaled to make the change in altitude more apparent.
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Figure 16. Slopes analysis of the terrain generated via
manual method that gave the closest result to the require-
ments.

6. CONCLUSIONS

A method to compute adirectional slopes has been pro-
posed and used to define reference distributions for de-
sign of martian rover missions like ExoMars rover or
Mars Sample Fetching Rover. Various methods to gen-
erate a terrain satisfying the requirements have been tried
with limited success. Now that we have gained experi-
ence in the statistical tool ”R”, future work will focus on
automating the manual process.
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