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Why terrain analysis

From early studies to actual design of a planetary rover mission
the knowledge of the type of terrain is crucial:

- engineering constraints for EDL are deeply related to terrain
morphology,

— rover missions need a reference terrain for design and verification
of surface mobility (e.g. Navigation, distance travelled per sol).

— Rover and landing system capabilities are both constraining the
landing site selection.
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Why terrain analysis

Gale

Stereopair:
PSP_009505_1755

In general knowledge a priori of the terrain is e
not possible.

]
i
e
v
-t
i
Ak
A
e
A

Holden
Mawrth2

fr—— i
biysionigd 1 wapair; B
Stereopair: et PSP_00T191_1535
PSP_006675_2045 S . PSP_007801_1535 G
PSP_00TE12_2045 [ g X
: s




Why terrain analysis

Mars presents a huge diversity of features and hazards
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mmmp Computer simulations to support rover design

Advantages: repeteability, speed, low-cost and flexibility in the
definition of parameters and costraints.




Reference terrain

Usually a reference terrain is given to help mission design, knowing
that the actual Martian terrain will be different.

The primary parameters which describe surfaces of a terrain given
its DEMs are:

- slopes,

- aspects,

— rocks.

Analysis of real terrain to deduce requirements for the

reference terrain.
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Outline

Definition of the slopes computation algorithm Adirectional
Slope Method

+ Slopes distribution for the reference terrain.

Brief recall on rocks distribution.

Examples of terrain generation methods.
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- All simulations have been run in the statistical environment R.

- Analysis of the DEMs has been done importing the geo reference
files in the geographical information system GRASS.
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s rmilist=1s{all=TRUE)}
> gource ["C:hiDocuments and Settingshivalentina wasarottoli Ny DocumentshhRooseh§
Error in eval.with.vis (expr, envir, enclos)
could not find function "aswSlopes™
> ls()
[1] "color.matrix™ "colors™ "iter" 't fm_1.4"
[6] "mean'
» librarvirgl)
> terrainddim)
Error in rgl.surface(x = c(0, -0.025339622962661, -0.0433570435944665,
had dimension for rows
> strim)
num [1:129, 1:129] 0 -0.0253 -0.0434 -0.0476 -0.0496 ...
> terrainddil:129,1:129,m)
> plot3d(1:129,1:129,m) I
> surfacedd(l:129,1:129,m,col="orange")
> str(mountains)
- attr (¥,
» gource ["C
Error in mo
could not
> persp3idim
> persp3idim
g
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Mmountains”

row, col] <- avy + rnorwm(l, 0, sdev)
Handle the edges by wrapping around to the
other side of the array
{row == 0) { m[size - 1, col]
wr ulah="", zlahd fecol == 0) { mlrow, size - 1]
Lah="", zlah="")

w=0, sdew=1] {"§
cumentsh ' Reosey §

avy b
avy b

Tlp the standard deviation of the random deviation
ﬂ roughness factor.
sdev <- sdev * roughness
H
returnim)

t

color.matrix <- function(m, ncolors, palette=terrain.colors) {
# Takes a watrix, and maps it onto a matrix of the same size
# in color space.

# Useful for draping a color map on top of & persp3d map.
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ASM + terrain requirements
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Def: The adirectional slope in a point is given
by the absolute value of the maximum slope
computed around the point, measured at a
specific length scale.

Adirectional Slope Method:

Set a base length L and an angle a.
Consider a circle of radius L around P(i,j).
a identifies P 5 on the circle. -
Pick P(k,l)aS the closest DEM point to P(i,j).
Compute the slope between I:)(k,l)and P(i i
Repeat for increments of a.

The slope in P(i’j) is the maximum value.
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A similar method

resolution Spacing ( > resolution)

Steepest neighbour: ° ° .
Pick the steepest of the 8 Spacing (= resolution)
adjacent neighbours, o | o o
considering the real distance o 55| » * ° *
on the grid. el el e

Equal to ASM when L=res, but
limits the computation to 8
points only when L > res.

——== | misses higher slopes
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Terrains analysis

ASM applied to four
potential landing sites for

& 4 & 4 & 5 54 a2
 EESRERERT.

:‘ MSL to study their slopes
i distribution. Gais
Mawrth2 DEMs from HIiRISE stereo

camera.

Analysis of the DEMs is
done importing the geo
reference files in GRASS
and then running ASM in R.
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Terrain analysis

12

Goal: define one known probability density function at specific
base length that describes the slopes distribution of the four
candidate landing sites.

%_

ESA focused on slopes computed over 5m and 100m distance.

Assumption: over 5m the surface is flat (but inclined !)
—= rocks added on a second stage,

craters not considered (avoided by rover)
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Slope distribution over 5m

Mars Analysis results - Adirectional Slopes
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Adirectional slopes in degrees over 5m



Slopes distribution over 100m

Mars Analysis results - Adirectional Slopes
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Summary {cesa

Requirements for the reference terrain

om base length: maximum slope (99.7™" percentile): 21.5°
Chi-square distribution

100m base length: maximum slope (99.7" percentile): 12°
Rayleigh distribution

On top: ROCKS
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Few remarks over rocks distribution

—=.,

Golombek et Rapp ——> the size-frequency distribution of rocks could be fit
with exponential functions.

. . »
Cumulative fractional area covered by rocks of diameter greater than s

a given D:
F(D) =kexp(-q(k)* D)

with
q(k) =1.79+ 0.152/k;

k = 0.069 (ExoMars).

Cumulative number of rocks:
F
N (D)= [—
D

area




Few remarks over rocks distribution

N(D) is known given F and k (deterministic model). But we need a
probabilistic one.

Golombek et all. —== the probability of having n rocks over a
surface of area S is an homogeneous 2-dimensional Poisson
spatial process of mean N*S, i.e.

nen

Psn (N) = N exp(-NS)

n!

How to generate it?

Compute Psn (M) and scatter the points uniformly over S.
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On a 60x60m terrain {cesa

Density Map

HiH Input # General Variables ######H#HHHHHHH
) k=0.069 #Percentage of area cover by rocks

d dimin = 0.4 #Minimal diameter [in meters]

dimax = 2 #Maximum diameter [in meters]

ratio = 0.5 #Ratio between heigth and diameter
areaLength = 60 #Side of square area to generate [in meters]
terrainResolution = 0.1 #Resolution for the DEM [in meters]

#Variables for the Navigable Path Image
navThreshold = 0.4 #rocks diameter threshold

d #The Navigation Map will be create to rock > (strict) to the navThreshold diameter value
roverRadius = 0.8 [in meters]
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Virtual terrain
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Terrain generations

Terrain via Variogram — slopes distribution

| Chisg
= Variogram slope

R on real terrain
(Mawrth2 here)
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Terrain generations

Slopes for a fractal terrain

B Fractal terrain

Manual rescaling : &

Rescaling Mawrth2, DEM 5m Resolution

Real Mawrth?2

Mawrth re-scaled and modified
WawirthZ re-scaled (scaling fact.1.4)
Chisg




Terrain generations

Slope distribution — Manual terrain

W Manual terrain, 5m res
B Manual terrain, 1m res
@ Chisq




Conclusion and future work

Introduction of ASM and its role for terrain
assessment/generation.

Extremely flexible, free, open-source softwares.

Match between 5m and 100m requirements.

Improve appearance of the manual terrain/ manual rescaling.

Other generation techniques?

Implementation for rover design.
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