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Why terrain analysis

• From early studies to actual design of a planetary rover mission
the knowledge of the type of terrain is crucial:

– engineering constraints for EDL are deeply related to terrain 
morphology,

– rover missions need a reference terrain for design and verification 
of surface mobility (e.g. Navigation, distance travelled per sol).

– Rover and landing system capabilities are both constraining the 
landing site selection.
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?

In general knowledge a priori of the terrain is 
not possible.

Why terrain analysis
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Why terrain analysis

Endurance

Yogi

blueberries???

Mars presents a huge diversity of features and hazards

Victoria

Columbia hills

dunes

Computer simulations to support rover design

Advantages: repeteability, speed, low-cost and flexibility in the 

definition of parameters and costraints.
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Reference terrain

• Usually a reference terrain is given to help mission design, knowing 

that the actual Martian terrain will be different.

• The primary parameters which describe surfaces of a terrain given 

its DEMs are:

– slopes,

– aspects,

– rocks.

Analysis of real terrain to deduce requirements for the 

reference terrain. 
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Outline

• Definition of the slopes computation algorithm Adirectional 

Slope Method

+ Slopes distribution for the reference terrain.

• Brief recall on rocks distribution. 

• Examples of terrain generation methods.
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Tools

• All simulations have been run in the statistical environment R.

• Analysis of the DEMs has been done importing the geo reference 

files in the geographical information system GRASS.

Both are 
free and 
open 
source
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ASM + terrain requirements
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ASM

Def: The adirectional slope in a point is given 
by the absolute value of the maximum slope 
computed around the point, measured at a 
specific length scale.

Adirectional Slope Method:

• Set a base length L and an angle α.

• Consider a circle of radius L around        .

• α identifies on the circle.

• Pick       as the closest DEM point to       .

• Compute the slope between       and       .

• Repeat for increments of α.

• The slope in        is the maximum value.
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A similar method

Steepest neighbour:

• Pick the steepest of the 8 

adjacent neighbours, 

considering the real distance 

on the grid. 

• Equal to ASM when L=res, but 

limits the computation to 8 

points only when L > res.

misses higher slopes 
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Terrains analysis

• ASM applied to four 

potential landing sites for 

MSL to study their slopes 

distribution.

• DEMs from HiRISE stereo 

camera.

• Analysis of the DEMs is 

done importing the geo 

reference files in GRASS 

and then running ASM in R.
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• Goal: define one known probability density function at specific 

base length that describes the slopes distribution of the four 

candidate landing sites.

requirements for the reference terrain

• ESA focused on slopes computed over 5m and 100m distance.

• Assumption: over 5m the surface is flat (but inclined !)

rocks added on a second stage,

craters not considered (avoided by rover)

Terrain analysis
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Slope distribution over 5m

Chi square!
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Slopes distribution over 100m

Rayleigh!
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Summary

Requirements for the reference terrain

5m base length:                       maximum slope (99.7th percentile): 21.5°
Chi-square distribution

100m base length:                   maximum slope (99.7th percentile): 12°
Rayleigh distribution

On top: ROCKS
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Rocks
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Few remarks over rocks distribution

• Golombek et Rapp the size-frequency distribution of rocks could be fit

with exponential functions.

• Cumulative fractional area covered by rocks of diameter greater than

a given D:

with

• Cumulative number of rocks:


D area

F(D) N

D) * exp(-q(k)k   F(D) 

(ExoMars). 0.069k
0.152/k;  1.79  q(k)

 



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Few remarks over rocks distribution

• N(D) is known given F and k (deterministic model). But we need a

probabilistic one. 

• Golombek et all. the probability of having n rocks over a 

surface of area S is an homogeneous 2-dimensional Poisson 

spatial process of mean N*S, i.e.

• How to generate it? 

Compute and scatter the points uniformly over S.

R can do it!

exp(-NS)
!
SN)( NS, n

np
nn



)( NS, np
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On a 60x60m terrain

############# Input # General Variables ############
k=0.069 #Percentage of area cover by rocks
dimin = 0.4 #Minimal diameter [in meters]
dimax = 2 #Maximum diameter [in meters]
ratio = 0.5 #Ratio between heigth and diameter
areaLength = 60 #Side of square area to generate [in meters]
terrainResolution = 0.1 #Resolution for the DEM [in meters]

#Variables for the Navigable Path Image
navThreshold = 0.4 #rocks diameter threshold
#The Navigation Map will be create to rock > (strict) to the navThreshold diameter value
roverRadius = 0.8 [in meters]
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Virtual terrain
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Terrain generations

Variogram
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R on real terrain 
(Mawrth2 here)
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Terrain generations

Fractals

R
Midpoint displacement 
algorithm

R

Manual rescaling
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Terrain generations

Manual terrain

R

R
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Conclusion and future work

• Introduction of ASM and its role for terrain 
assessment/generation.

• Extremely flexible, free, open-source softwares.

• Match between 5m and 100m requirements.

• Improve appearance of the manual terrain/ manual rescaling.

• Other generation techniques?

• Implementation for rover design.
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Thank you for your 
attention.


