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ABSTRACT

After a short review of the experimental foundations of
metric theories of gravity, the choice of general relativity
as a theory to be used for the routine modelling of Gaia
observations is justified. General principles of relativistic
modelling of astronomical observations are then sketched
and compared to the corresponding Newtonian princi-
ples. The fundamental reference system —the Barycentric
Celestial Reference System — which has been chosen to
be the relativistic reference system underlying the future
Gaia reference frame is presented. Principal relativistic
effects in each constituent of a relativistic model of astro-
nomical observations are briefly elucidated. The structure
of a relativistic model of positional observations which
can be used as a standard relativistic model for Gaia is
sketched. The physical meaning of the Gaia reference
frame is discussed. It is discussed also how Gaia obser-
vations can be used to verify general relativity.

Key words: Relativity; Reference systems; Gaia refer-
ence frame.

1. WHY RELATIVITY?

The reduction scheme of positional observations in New-
tonian physics is rather simple. Absolute Euclidean space
and absolute time of Newtonian physics lead to the exis-
tence of global preferred coordinates: inertial coordinates
which are unique up to a constant shift of the origin of the
time coordinate, constant rotation of spatial axes and a
shift of the origin of spatial coordinates which is at most
linear in time. Although already in Newtonian physics
one can introduce arbitrary coordinates (e.g., some curvi-
linear coordinates), the inertial coordinates are certainly
preferred since the laws of physics look especially simple
when expressed in an inertial reference system. More-
over, observed quantities (distances, directions, etc) are
directly related to those global inertial coordinates.

Let us briefly consider the Newtonian scheme of reduc-
tion of astronomical observations. Figure 1 sketches the
four constituents of an astronomical observation from the
point of view of Newtonian physics: (1) motion of the
observed object, (2) motion of the observer, (3) propaga-
tion of an electromagnetic signal from the object to the
observer, and (4) the process of observation. The last two

observer

\._ observation

r

object \

Figure 1. Four parts of an astronomical event from the
point of view of Newtonian physics: 1) motion of the ob-
served object; 2) motion of the observer; 3) trajectory of
an electromagnetic signal from the observed object to the
observer which is tacitly assumed to be a straight line in
Newtonian astronomy; 4) the process of observation re-
sponsible for Newtonian aberration. The coordinate grid
in the background symbolizes a global inertial reference
system.

parts can be formulated in a quite simple way in Newto-
nian physics. It is normally tacitly assumed here that the
light rays are straight lines in some inertial coordinates.
As for ‘the process of observation’, it is responsible for
the appearance of Newtonian aberration which reflects
the difference in observed directions to the source by a
moving observer and by an observer at rest relative to the
chosen coordinates.

The goal of Newtonian reduction of astronomical obser-
vations is to model (to predict) the results of observations
performed by a fictitious observer (normally situated at
the origin of the chosen reference system, e.g., at the
barycentre of the Solar System) at some given moment
of time. One attempts here to correct for all the effects in
observations which are produced by the motion and the
position of the real observer (aberration and, e.g., paral-
lax, respectively) and by the motion of the object (proper
motion and, possibly, light travel time effects). The struc-
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ture of a Newtonian reduction scheme does not depend
on the goal accuracy of reduction and can be described
as follows: (1) aberration, (2) parallax, (3) proper motion
and/or light travel time effects. For low accuracies when
only linear effects from aberration, parallax and proper
motion are of interest, one could apply the correspond-
ing corrections in arbitrary order. On the contrary, for
higher accuracies the order of these reductions is impor-
tant. All parameters of the model, i.e., the coordinates of
the observer and the object as a function of time, are de-
fined in the chosen inertial reference system. That is, the
five standard astrometric parameters of the object (right
ascension «, declination ¢, parallax 7, proper motion in
right ascension ., and proper motion in declination ps)
are also defined in the chosen reference system.

The rapid increase of observational accuracy of astro-
nomical observations has already made indispensable the
use of general relativity for modelling of the observa-
tional data. For many kinds of observations the New-
tonian scheme sketched above fails to describe observa-
tional data with the required accuracy. In many cases the
deviations from the model are several orders of magni-
tude larger than the accuracy of observations. Examples
are astrometric (geodetic) VVLBI observations, lunar laser
ranging, radar ranging to the planets, experiments with
high accuracy clocks, GPS observations. It is also widely
known and accepted that the deviations can be eliminated
by using Einstein’s general theory of relativity (instead of
Newtonian physics) for the modelling of observations.

The accuracy of positional observations to be produced
by Gaia is expected to attain 2-3 pas for the stars with
magnitude V' < 10 mag and 10 pas for the stars of
V' =15 mag. Itis clear that not only the largest relativis-
tic effects, but also many additional subtle effects should
be taken into account to attain that accuracy. It is also
quite clear that relativistic effects cannot be considered as
small corrections to a Newtonian model as has been of-
ten done earlier when the accuracy was not so high. The
whole model should be formulated in a language compat-
ible with general relativity. In such a relativistic frame-
work many Newtonian concepts must be abandoned and
the meaning of astrometric parameters such as position,
parallax and proper motion of a star should be redefined.

2. EXPERIMENTAL FOUNDATIONS OF GEN-
ERAL RELATIVITY

Einstein’s general relativity is by no means the only pos-
sible theory of gravity. However, it seems to be the sim-
plest theory among the theories successfully passing all
available observational tests. Let us briefly review the
experimental foundations of general relativity. A detailed
review of the modern experimental foundations of gravi-
tational physics can be found in Will (2001).

2.1. Einstein Equivalence Principle

The basic principle of the theory is called Einstein Equiv-
alence Principle. This principle consists of the following
three parts:

(1) The Weak Equivalence Principle stating that the
masses on both sides of the Newtonian gravitational law

i i3
Miner T = —G Mgrqy M 7" /T

exactly coincide m;pe, = Mmgrq. for all bodies (actually,
this is equivalent to the claim that G is a constant and
its value is independent of the choice of the bodies with
which we measure it). The Weak Equivalence Principle
has been tested in many different experiments with a pre-
cision of |om|/m < 4x 10713,

(2) Local Lorentz invariance stating that the outcome of
any local non-gravitational experiment is independent of
the velocity of the freely-falling test laboratory (refer-
ence frame) where it is performed. This is equivalent to
the principal postulate of special relativity theory which
states that the light velocity in vacuum c is constant in
any inertial reference system. This has been tested at a
level of ~ 1072,

(3) Locdl positional invariance which states that the out-
come of any local non-gravitational experiment is inde-
pendent of where and when in the universe it is per-
formed. A part of local positional invariance can be tested
by measuring of the gravitational red shift (e.g., of the
clock frequency)

Av/v=(1+a)c?AU,

where o = 0 in general relativity. A number of different
experiments have proved that |a| < 2 x 10=*. Another
part of local positional invariance (independence of “po-
sition’ in time) can be tested by looking for possible time-
dependencies of fundamental (non-gravitational) con-
stants. Different kinds of experimental data show tight
constrains on possible time-dependence of the constants
(e.g., the fine structure constant should be constant at a
precision of ~ 10~ over a Hubble time of 13 billion
years).

2.2. Testing Metric Theories of Gravity

One can argue that if the Einstein Equivalence Principle is
valid the gravity can be interpreted as an effect of curved
spacetime. However, the Einstein Equivalence Principle
does not necessarily imply general relativity. There exists
a class of alternative theories of gravity compatible with
that Principle. These theories are called metric theories
of gravity. In order to test the principal observable ef-
fects of metric theories of gravity a special scheme called
Parametrized Post-Newtonian (PPN) formalism has been
proposed (Will 1993). The scheme involves up to 10 nu-
merical parameters which have different values in differ-
ent theories and which can be fitted from observations.
The most important PPN parameters are v and 3. Re-
sults of data processing with a PPN reduction model in-
colve a set of constraints on the PPN parameters. Alter-
natively, the results can be interpreted as boundaries on
possible deviations from general relativity. The most im-
portant experimental results in this second interpretation
are summarized in Table 1.

An additional test of general relativity is the search for
possible time-dependence of the Newtonian gravitational
constant G. This can be done by looking for secular
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Table 1. Most important post-Newtonian tests of general relativity

observational data relativistic effect

possible deviation reference

from general relativity

VLBI differential Shapiro delay

Hipparcos

Viking radar ranging
Cassini radar ranging
Planetary observations
Lunar laser ranging
Lunar laser ranging

light deflection
Shapiro delay
Shapiro delay
perihelion advance
Nordtvedt effect
geodetic precession

+0.0003 Eubanks et al. (1997)
£0.003 Froeschlé et al. (1997)
+0.002 Reasenberg et al. (1979)
+0.000023 Bertotti et al. (2003)
+0.0002 Pitjeva (2001)

+0.001 Williams et al. (1996)
+0.001 Williams et al. (1996)

changes in the semi-major axes of Solar System planets
(especially, Mercury, Venus, Earth and Mars) as well as
from pulsar timing of double pulsars. The most stringent
estimate here is |G//G| < 10713 per year (Pitjeva 2001).
General relativity predicts that G is time-independent.
One more argument in favor of general relativity is the
well-known indirect evidence for gravitational radiation
in the double pulsar timing data. Gravitational radiation
is strong-field regime phenomenon which is beyond the
scope of the PPN formalism.

All this shows that one can be ‘reasonably confident’
about the correctness of general relativity, and that gen-
eral relativity can be used as ‘standard’ theory. Never-
theless, it is still very important to test general relativity
further. This will be discussed below in Section 6.

3. RELATIVISTIC MODELLING OF ASTRO-
NOMICAL OBSERVATIONS

Let us now outline general principles of relativistic mod-
elling of astronomical observations. It is interesting that
in spite of a deep conceptual difference between New-
tonian physics and general relativity, the structure of the
reduction scheme changes, in principle, only in one point:
light rays are no longer straight lines and should be care-
fully modeled. Figure 2 shows the four constituents of
an astronomical observation in the relativistic framework.
In curved spacetime there are no preferred coordinates
where the laws of physics would have a substantially sim-
pler form than in other coordinates. Therefore, any ref-
erence system covering the spacetime region under study
can be used. Instead of Newtonian inertial coordinates
one has to choose some reference system in curved space-
time which is sketched symbolically on Figure 2 as a grid
of curved coordinates.

3.1. General Scheme of Relativistic Modelling

A general scheme of relativistic modelling is presented
on Figure 3. Starting from general theory of relativity,
any other metric theory of gravity or the PPN formalism
one should define at least one relativistic 4-dimensional
reference system covering the region of space-time where
all the processes constituting a particular kind of astro-
nomical observations are located. Each of four con-

Figure 2. Four parts of an astronomical event from the
point of view of relativistic physics: 1) mation of the ob-
served object; 2) motion of the observer; 3) trajectory of
an electromagnetic signal from the observed object to the
observer which represents a geodetic line (i.e., a‘ curved’
line) in the chosen reference system; 4) the process of ob-
servation. The grid of curved coordinates in the back-
ground symbolizes the chosen relativistic reference sys-
tem.

stituents of an astronomical observation should be mod-
eled in the relativistic framework. The equations of mo-
tion of both the observed object and the observer relative
to the chosen reference system should be derived and a
method to solve these equations should be found. The
equations of light propagation relative to the chosen ref-
erence system should be derived and a way to solve them
should be found. The equations of motion of the object
and the observer and the equations of light propagation
enable one to compute positions and velocities of the ob-
ject, observer and the photon (light ray) with respect to
that particular reference system at a given moment of the
coordinate time, provided that the positions and veloci-
ties at some initial epoch are known. However, the posi-
tions and velocities calculated in this way obviously de-
pend on the reference system, that is on the preferences
of the person who writes down the equations. On the
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Figure 3. General principles of relativistic modelling of
astronomical observations (see text for further explana-
tions).

other hand, the results of observations cannot depend on
the choice of the reference system. Therefore, it is clear
that one more step of the modelling is needed: a rela-
tivistic description of the process of observation. This
part of the model allows one to compute a coordinate-
independent theoretical prediction of observables start-
ing from the coordinate-dependent quantities mentioned
above.

These four components can now be combined into rela-
tivistic models of observables. The models give an ex-
pression for relevant observables as a function of a set of
parameters. These parameters can then be fitted to ob-
servational data using some kind of parameter estimation
scheme. The sets of certain estimated parameters appear-
ing in the relativistic models of observables represent as-
tronomical reference frames (see Section 5). It is impor-
tant to understand at this point that the relativistic mod-
els contain some parameters which are defined only in
the chosen reference system(s) and are thus coordinate-
dependent. For example, position and velocity of the ob-
served object are clearly coordinate-dependent.

3.2. TheBarycentric Celestial Reference System

From the physical point of view any reference system
covering the region of space-time under consideration
can be used to describe physical phenomena within that
region. In this sense we are free to choose the refer-
ence system to be used to model the observations. How-
ever, reference systems, in which mathematical descrip-
tion of physical laws is in one sense or another simpler
than in some other reference systems, are more conve-
nient for practical calculations. Therefore, one can use
the freedom to choose the reference system to make the
parametrization as convenient and reasonable as possible.

Two Working Groups on relativity in astrometry, celestial
mechanics and metrology established 1997 by the Inter-

national Astronomical Union (IAU) and Bureau Interna-
tional des Poids and Mesure (BIPM) have come to the
conclusion that the most convenient relativistic reference
system for the applications in astrometry, Solar System
dynamics, and time keeping and dissemination is defined
by the following metric tensor (Soffel et al. 2003):

2w 2w? _
900:—1+C—2—c—4+0(c °),

4 _5
goi =— 5w +0(c™?),

Gij = 0ij (1 +

with the post-Newtonian potentials w and w* defined by
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The origin of spatial coordinates of this reference system
is chosen to coincide with the barycentre of the Solar Sys-
tem. The reference system defined in this way is called
the Barycentric Celestial Reference System (BCRS). The
BCRS has been explicitly recommended by the 1AU for
the modelling of high accuracy astronomical observa-
tions (IAU 2001; Rickman 2001; Soffel et al. 2003). For
the moment the BCRS is a post-Newtonian reference sys-
tem with higher order terms (post-post-Newtonian terms,
etc) neglected in the metric tensor (1). The reason for
that is that the post-Newtonian approximation is suffi-
cient to model any observations in the foreseeable future
(including microarcsecond astrometry as long as the ob-
servations are made further than about one degree from
the Sun). Post-post-Newtonian terms can be added to the
metric tensor as soon as they are necessary for some ap-
plications. The word ‘celestial’ in the name of BCRS is
used to underline that the BCRS do not rotate with the
Earth and that remote sources do not move relative to the
BCRS in some averaged sense. The second reference sys-
tem deined by the same AU resolutions (Rickman 2001)
is the Geocentric Celestial Reference System (GCRS).
This reference system is only marginally important for
Gaia (mostly for modelling of orbit tracking data and re-
lating the Gaia onboard clock to TAI (Klioner 2003a))
and will not be discussed here. The PPN version of the
BCRS valid for certain class of metric theories of gravity
can be found in Klioner & Soffel (2000) and Will (1993).

The BCRS will be also used for the modelling of Gaia
observations. This is a reference system underlying the
resulting Gaia catalogue (see Section 5 below). The co-
ordinate time of the BCRS is called Barycentric Coordi-
nate Time (TCB). The TCB will be used to parametrize
the Gaia catalogue.



3.3. Motion of the Objectsand the Observer

Typically, for objects situated in the Solar System (aster-
oids, planets, space vehicles) the equations of motion are
ordinary differential equations of second order and nu-
merical integration with suitable initial or boundary con-
ditions can be used to solve them. For objects outside of
the Solar System one uses often simple models like uni-
form and rectilinear motion in space or more complicated
ones, e.g., for binary stars. In any case one should under-
stand that in the relativistic framework all these ad hoc
models give positions and velocities of observed objects
in the chosen relativistic reference system.

The principal relativistic effects in the translational mo-
tion of bodies in the Solar System (including Gaia satel-
lite, asteroids, etc) are contained in the so-called Einstein-
Infeld-Hoffmann (EIH) equations of motion of N gravi-
tating bodies, whose gravitational fields can be described
by their masses M 4 only:

3} T4—x
bam— 3 Gy AT
B#A |za — 5]

1 . _
+C—2FPN(MB,:BB,.’BB)+O(C 4). (5)

The Newtonian part of these equations (shown explicitly
above) follows from the term of order ¢ =2 in goo. The rel-
ativistic terms require all other terms in the BCRS metric
tensor specified above. Various parts of these equations
represent: (1) relativistic perihelion advance (~43" per
century for Mercury, ~10” per century for lIcarus, etc);
(2) geodetic precession (~2 " per century for Lunar or-
bit); (3) various periodic relativistic effects (important
mostly for LLR and binary pulsar timing observations).
Further effects not contained in the EIH equations are the
effects due to rotation of the bodies (Lense-Thirring or
gravitomagnetic effects) and those due to non-sphericity
of the gravitating bodies. These additional effects are
marginal for the current accuracy of LLR and SLR, but
negligible for Gaia. In the case of the Gaia satellite one
should use a slightly simplified version of the EIH equa-
tions since the influence of the mass of the satellite on the
motion of other gravitating bodies can be neglected.

The BCRS metric tensor allows one also to derive the
equations of rotational motion of an extended body.
These equations will not be discussed here, since they
are not important for Gaia.

3.4. Light Propagation

In any metric theory of gravity the equations of light
propagation coincide with the equations of geodetic lines
in the chosen reference system. The latter are ordinary
differential equations of second order. These equations
could also be solved by numerical integrations, but nor-
mally one prefers to use some approximate analytical so-
lutions. Only in some special (normally, highly symmet-
rical) cases like Schwarzschild metric are exact analytical
solutions known. Anyway, an appropriate way to solve
the equations of light propagation should be found.

The structure of the BCRS equations of light propagation
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can be written as follows

x(t) =xo+co(t—to) +c *Syn(t)
+ 0_3 Sl,5pN<t), (6)

where xy and o are the parameters of Newtonian straight
line, S, are the post-Newtonian terms, and S 5,n are
the additional effects induced by the motion of gravitat-
ing matter (i.e., by translational and rotational motion of
gravitating bodies). The terms of order of ¢=2 in both
goo and g;; are required to derive S, (t), and the terms
c¢=3 in go; are needed for S1.5pn. The next order effects,
the so-called post-post-Newtonian effects, would require
terms of order of ¢=* in both goo and g;; (the ¢=* terms
in g;; are not in the current definition of the BCRS metric
tensor). The principle observable effects in the light prop-
agation are (1) the gravitational light deflection (amount-
ing to 1.75” for a light ray grazing the Sun) and (2) the
gravitational signal retardation (the Shapiro effect; this
effect amounts to ~ 240 ps for the radar ranging of \enus
in upper conjunction).

3.5. Conversion to Observables. Proper Direction

As mentioned above the conversion of the coordinate-
dependent quantities into coordinate-independent ob-
servables is an important part of relativistic modelling.
From the mathematical point of view the coordinate-
independent quantities are scalars. Special mathemati-
cal techniques are known to perform the suitable con-
version in each particular case. One of the most impor-
tant applications of this conversion procedure is a con-
version of the coordinate direction n into the source into
the corresponding observable direction s. The observ-
able direction is often called ‘proper direction’ in gravi-
tational physics. Proper direction is a direction relative to
the proper reference frame of the observer (see Section 5
about the difference of the concept of ‘reference frame’
in astronomy and gravitational physics). A proper ref-
erence frame is a mathematical model of an ideal clock
and three orthogonal rigid rods which the observer uses
to measure time intervals, distances and directions in his
vicinity. In the special theory of relativity the proper ref-
erence frame of an observer is related to some inertial
reference system by a Lorentz transformation. It is there-
fore sufficient to use Lorentz transformations to convert
n into s. The parameter of the Lorentz transformation in
this case coincides with the velocity of the observer rela-
tive to the chosen reference system. In general relativity
it is also sufficient to use Lorentz transformations, but the
parameter v of the transformations should be related to
the BCRS velocity of the observer as

v=2g, <1 + C%w(t, :130)> +0(c™), (7

where x, and &, are the BCRS positions and velocity of
the observer, respectively. A detailed discussion of this
conversion and comparison of different approaches can
be found in Klioner (2003b). The relativistic terms in
(7) are derived from the ¢=2 terms in goo and g;; of the
BCRS metric tensor. The difference between n and s
can be called relativistic aberration. The difference be-
tween the Newtonian aberration and the relativistic one
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Figure 4. Five principal vectors used in the model (see
text for explanations).

may amount to several milliarcsecond for Gaia observa-
tions.

3.6. Conversion to Observables. Proper Time

Another important case is the conversion of intervals of
the coordinate time ¢ into the corresponding intervals of
the proper time 7 of the observer. The general form of
this conversion reads

dr/dt =1+ c 2 Apn + ¢ Ay +0O(c7),  (8)

where A,n and Ay, N are the post-Newtonian and post-
post-Newtonian terms, respectively. The explicit form of
these two functions depends on the metric tensor: in or-
der to compute for A, x the ¢c=2 terms in goo are needed,
while the ¢=* terms in ggo, the ¢ =3 terms in go;, and the
c~2 ones in g;; are required to compute A,, . Typically
in the Solar System and in particular for Gaia onboard
clocks [¢™2 Apn| ~ 1078 and |c=* Ap,n| ~ 10716,

4. RELATIVITY FOR GAIA

Now, having all these theoretical tools one can formulate
the relativistic model for Gaia. The relativistic model for
Gaia is well documented (Klioner 2003a), so that we just
outline the overall structure of the model here.

4.1. Structure of the Standard Relativistic M odel

The model consists essentially of subsequent transforma-
tions between 5 following vectors (Figure 4):

a) s is the unit observed direction (the word “unit’ means
here and below that the formally Euclidean scalar product
s - 8 = s"s" is equal to unity),

1

b) » is the unit vector tangential to the light ray at the
moment of observation,

c) o is the unit vector tangential to the light ray at ¢t =
o0,

d) k is the unit coordinate vector from the source to the
observer,

e) 1 is the unit vector from the barycentre of the Solar
System to the source.

Note that the last four vectors should be interpreted as
sets of three numbers characterizing the position of the
source with respect to the BCRS. Vector s represents
components of the observed direction relative to the local
proper reference system of the satellite. All these vec-
tors would change their numerical values if some other
relativistic reference system is used instead of the BCRS.
The model consists then in a sequence of transformations
between these vectors as shown in Figure 5. The phys-
ical meaning of each transformation can be summarized
as follows (the numbering here coincides with the num-
bering on Figure 5):

(1) aberration (effects vanishing together with the
barycentric velocity of the observer): this step converts
the observed direction to the source s into the unit BCRS
coordinate velocity of the light ray n at the point of ob-
servation;

(2) gravitational light deflection for the source at infinity:
this step converts n into the unit direction of propagation
o of the light ray infinitely far from the Solar System at
t — —o00;

(3) coupling of finite distance to the source and the grav-
itational light deflection in the gravitational field of the
Solar System: this step converts o into a unit BCRS coor-
dinate direction k going from the source to the observer;

(4) parallax: this step converts k into a unit BCRS direc-
tion I going from the barycentre of the Solar System to
the source;

(5) proper motion, etc: this step provides a reasonable
parametrization of the time dependence of I (and, possi-
bly, of the parallax 7) caused by the motion of the source
relative to the barycentre of the Solar system;

(6) orbit determination process.

These transformations have already been discussed in
full detail (Klioner 2003a; Klioner & Peip 2003; Klioner
2003b). Let us only mention the following. The most
complicated part of the model is the light deflection
model where the effects of (1) monopole fields of all ma-
jor Solar System bodies, (2) quadrupole fields of the gi-
ant planets, and (3) gravitomagnetic fields due to trans-
lational motion of all major bodies should be taken into
account in order to attain the accuracy of 1 pas. More-
over, each body with a mean density p and radius R >

(p/1 g/em®)~/2x 650 km produces a light deflection
of at least 1 pas. Therefore, a few tens of minor bod-
ies (mainly, satellites of the giant planets) should also be
taken into account in certain rare cases (Klioner 2003a).
The parametrization of time dependence of [ in the rela-
tivistic framework looks exactly the same as in the New-
tonian case. The only difference is that all vectors and
parameters here (parallax, proper motion, etc.) are coor-
dinate quantities defined in the BCRS.
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Figure 5. Transformation sequences (see text for explanations).

4.2. Implementation of the M odel

An ANSI C code has been written to implement the rela-
tivistic model in its full complexity (Klioner & Blanken-
burg 2003; Klioner 2003b). The model has been im-
plemented in two modes: predictor mode and corrector
mode. Predictor mode implements the standard way of
astrometric reductions when the observed direction to the
source is predicted starting from some a priori catalogue
parameters (coordinates, proper motion, parallax, etc) of
that source. The catalogue is supposed to be improved
later by fitting the parameters to the whole set of data.
Corrector mode implements the reductions in the oppo-
site direction, that is, the momentary barycentric direc-
tion to the source is restored from the observed direction
as good as possible. The code does not contain any at-
tempt to restore parallaxes and proper motions, or orbits
of the sources: the model can only be applied separately
for each individual observation.

Both modes are implemented both for Solar System ob-
jects and for remote sources situated outside of the Solar
System. The principal difference between remote sources
and Solar System sources lies in the treatment of the
light propagation: an initial value solution of the corre-
sponding differential equations is used in the former case,
while in the latter case two point boundary value problem
should be solved. Although analytical approximations
are used in both cases, a rather time-consuming numer-
ical inversion process is used for Solar System sources
in the predictor mode in order to attain the goal accu-
racy of 1 pas. The corresponding refinement of the model
aimed at direct analytical solution for this case is under-
way (Klioner & Blankenburg 2004).

For remote sources the corrector and predictor modes be-
ing implemented independently of each other must give
exactly the opposite transformations. This was used to
massively test the implementation (Klioner & Blanken-
burg 2003). The situation is different for Solar System
objects. Here for the corrector mode, it is statistically bet-
ter to calculate the gravitational light deflection as if the
body were a remote source, even if it is known a priori
that the source is a Solar System body (but it is not known
how far the body is, otherwise at least a preliminary orbit
is known and one should better use the predictor mode).

The implementation was conceived to be as flexible as
possible. Internal parameters allow one to select the type
of arithmetic to be used (to test possible numerical in-
stabilities), to change easily any of the physical, math-
ematical and astronomical constants used in the model
(including switching between several available planetary
ephemerides), to switch on and off each individual effect.
Both predictor and corrector mode routines have a goal
accuracy parameter, which is used together with some a
priori criteria to decide which effects should be computed
in each particular case. The latter feature allows one to
speed up the calculations substantially if a lower accu-

racy is sufficient (e.g., the source brightness information
can be used to meet the Gaia observational accuracy for
fainter objects).

The implementation has been used in massive numeri-
cal tests aimed at identifying possible inconsistencies or
numerical instabilities as well as points of critical numer-
ical performance. The implementation was used also to
test another simplified model implementation used in the
GDAAS (Anglada-Escudé et al. 2005). The implementa-
tion of the full model will be further supported and opti-
mized.

4.3. Beyond the Standard Relativistic M odel

The model described above is constructed under assump-
tion that the Solar System is isolated. This means that any
influence of gravitational fields generated outside of the
Solar System are ignored in the model. For the majority
of the sources the external field can indeed be fully ne-
glected, but there are a number of cases when the external
gravitational fields produce observable effects. Several
authors have discussed these additional effects in detail
(see, e.g., (see, e.g., Klioner 2003a; Kopeikin & Gwinn
2000). Let us briefly list here the main effects of this
kind:

(1) Gravitational light deflection caused by the masses
situated outside of the Solar System: (a) weak microlens-
ing on the stars of the Galaxy (Belokurov & Evans 2002),
(b) lensing on gravitational waves (both primordial ones
and those from compact sources), (c) lensing of the com-
panions of edge-on binary systems.

(2) Cosmological effects.

(3) More complicated models for the motions of observed
objects in the BCRS are necessary for the case of binary
stars, etc.

Note that all these effects can be easily taken into account
by a simple additive extension of the standard model
since at the required accuracy the external gravitational
fields can be linearly superimposed on the Solar Sys-
tem gravitational field. The only exception could be the
effects of cosmological background, but a preliminary
study by Klioner & Soffel (2005) shows that even here
the coupling of the local Solar System fields and the ex-
ternal ones can be neglected.

5. GAIA REFERENCE FRAME

It is important to remember that all astrometric parame-
ters of sources obtained from Gaia observations will be
defined in the BCRS coordinates: positions, proper mo-
tions, parallaxes, radial velocities, orbits of minor plan-
ets, binaries, etc. All these parameters will represent the
Gaia reference frame, which is a materialization of the
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BCRS. The Gaia reference frame is, so to say, a model of
the universe in the BCRS. Thus, the goal of astrometry in
the relativistic framework is not to find ‘the’ barycentric
inertial reference system, which is unique in Newtonian
formulation, but to find a materialization of some chosen
relativistic reference system.

Let us note here that the meaning of words ‘reference
system’ and ‘reference frame’ in relativistic astronomy is
different from the meaning normally used in gravitational
physics. Reference systemis a purely mathematical con-
struction (a chart) giving ‘names’ to space-time events.
A reference frameis, in contrast, some materialization
(realization) of a reference system. In astronomy the ma-
terialization is normally given in a form of a catalogue (or
ephemeris) containing positions of some celestial objects
relative to the selected reference system. Any astronom-
ical reference frame (a catalogue, an ephemeris, etc) is
defined only through the reference system(s) used to con-
struct physical models of observations.

6. GAIA FOR RELATIVITY

Using general relativity for the standard reduction model
does not mean that Gaia data should not be used to test
general relativity itself. On the contrary, testing relativity
is one of the exciting goals of the mission. Gaia will cer-
tainly deliver an estimate of the PPN parameter -, appear-
ing mainly in the magnitude of the light deflection effects,
with an unprecedented accuracy of ~ 5 x10~7. However,
it is by no means the only way Gaia will improve our
knowledge of gravitational physics. Gravitational light
deflection could be tested in a much more profound way
with the Gaia data. It will be certainly possible to look
for terms with totally different dependence on the angular
distance to the deflecting body. In this sense one should
be able to get first experimental estimates of higher-order
effects. Also the PPN parameter 3, appearing in the equa-
tions of motion of Solar System bodies, will be deter-
mined with an accuracy of ~ 10~* (Hestrofer & Berthier
2005) which is comparable with the current accuracy
from the planetary fits (Pitjeva 2001). A simultaneous
fit with the planetary data could further improve the ac-
curacy. Special data processing of observations close to
Jupiter and Saturn (which should be dropped from the
global absolute solution since the positions of those plan-
ets are not known with an accuracy necessary to predict
the light deflection at the level of 1 pas) will allow to test
subtle relativistic effects caused by translational motion
of the planets and by their quadrupole gravitational fields
(see Crosta & Mignard (2005) for a preliminary study of
the second of these possibilities). A number of cosmo-
logical tests (upper estimates of parallaxes of quasars, ap-
parent proper motions of quasars, possible traces of low-
frequency gravitational waves in those proper maotions,
direct measurement of the acceleration of the Solar Sys-
tem relative to quasars, etc) will also have a big impact
on our knowledge. A lot of work is still necessary to un-
derstand how to use the full potential of the huge amount
of observation data Gaia will deliver to us in the most
efficient and useful way.
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