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ABSTRACT

We present numerical methods for the inversion of
forthcoming Gaia astrometry for asteroid orbital-element
probability density functions. In the initial orbit computa-
tion for two or more observations, the statistical ranging
technique (Ranging) allows a Monte Carlo (MC) sam-
pling of the phase space of the orbital elements. In as-
sessing the rapidly improving orbits in what we call the
phase-transition regime, we sample the phase-space vol-
umes of variation with the help of local linear approx-
imations along the lines of variation (VOV sampling).
For extensively observed asteroids, the standard linear
approximation based on nonlinear least squares provides
the differentially corrected orbital elements and their co-
variance matrices based on partial derivatives. We offer
a short theoretical treatment of the linking and identifi-
cation problems, that is, the problems of linking differ-
ent observation sets and cross-identifying objects in the
sets. Here we describe the general concepts of the so-
called address comparison techniques that entail a one-
dimensional discretization for phase spaces of arbitrary
dimension. We summarize the current state of the For-
tran95 software developed for the Gaia orbital inverse and
linking problems and, in a companion article, apply the
methods to simulated Gaia astrometry.

Key words: Gaia; Asteroids; NEOs; Asteroid orbit com-
putation; Asteroid identification; Inverse problems.

1. INTRODUCTION

Gaia promises to provide astrometry of revolutionary ac-
curary for large numbers of small Solar System bod-
ies crossing the near-Earth space (NEOs, near-Earth ob-
jects), asteroids residing in the main belt between Mars
and Jupiter (MBOs, main-belt objects), and Jupiter Tro-
jan, Centaur, and transneptunian objects orbiting the Sun
in more distant space. Gaia will additionally detect a
number of comets and natural satellites of planets. All
of the small bodies give rise to inverse problems of deriv-
ing orbital-element probability density functions (p.d.f.’s)
from the astrometric observations by Gaia. In what fol-
lows, we provide the theoretical methods currently appli-
cable to asteroid orbit computation.

The recent progress in asteroid orbit computation is re-
viewed by Bowell et al. (2002). Here we summarize cer-
tain advances in orbit computation from the last decade
or so. What has led to these advances is the increased de-
mand on the accuracy of asteroid orbit computation, via
the realization that NEOs constitute a significant risk for
the prosperity and survival of the human species. The
orbit computation techniques have been accompanied by
techniques for close approach and collision probability
assessment (Milani et al. 2002).

The present paper is the first of two papers assessing as-
teroid orbit computation using forthcoming Gaia astrom-
etry. Here we provide a detailed description of the the-
oretical methods involved in interpreting the Gaia data,
whereas in the companion paper (Virtanen et al. 2005)
the techniques are applied to a number of example cases
arising from simulated Gaia data. We emphasize that the
global solution for asteroid orbits from Gaia data will
only be ready at the end of the survey, because the as-
teroid dynamical evolution and physical properties are
intertwined due to the precision of the Gaia astrometry.
The full statistical inverse problem encompasses solv-
ing for the sizes, shapes and masses (also for perturbing
objects) as well as relativistic effects simultaneously for
large numbers of asteroids1.

In Section 2, we summarize the a posteriori p.d.f. for or-
bital elements, and the various techniques to characterize
the p.d.f. In Section 3, we provide a treatment of the sta-
tistical techniques for linking different observations and
identifying objects. Section 4 assesses the current orbit
computation software, briefly summarizing the capabili-
ties and limitations. We conclude the paper by outlining
future prospects in Section 5.

2. INVERSE PROBLEM

2.1. Orbital-element Probability Density

Assume that N pairs of positions in Gaia-centric longi-
tude and latitude ψ = (λ1, β1; . . . ;λN , βN )T have been
observed for a certain asteroid at times t = (t1, . . . , tN )T

1see http://www.obs-nice.fr/tanga/SSWG/ – the web site of the Gaia
Solar System Working Group
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(T stands for transpose). Here it is formally straight-
forward to include motions in longitude and latitude (λ̇
and β̇) as observables.

Let the theoretical, computed light–time–corrected sky–
plane positions be described by the vector Ψ(P ) for
the osculating orbital elements P of an asteroid at
a given epoch t0. For Keplerian elements, P =
(a, e, i,Ω, ω,M0)

T (T is transpose) and the elements
are, respectively, the semimajor axis, eccentricity, incli-
nation, longitude of ascending node, argument of per-
ihelion, and mean anomaly. The three angular ele-
ments i, Ω, and ω are currently referred to the eclip-
tic at equinox J2000.0. For Cartesian elements, P =
(X,Y, Z, Ẋ, Ẏ , Ż)T where, in a given Cartesian refer-
ence frame, the coordinates (X,Y, Z)T denote the posi-
tion and the coordinates (Ẋ, Ẏ , Ż)T the velocity.

The astrometric observations, theoretical positions, and
observational errors are related to each other through the
observation equation,

∆ψ = ψ −Ψ(P ) = ε

ε = (εα1, εδ1; . . . ; εαN , εδN )T , (1)

where the vector ε describes the observational errors as-
sumed to be drawn from an observational error p.d.f.

The orbital-element p.d.f. pp is proportional to the a pri-
ori (ppr) and observational error p.d.f.’s (pε), the latter
being evaluated for the sky-plane (‘Observed-Computed’
or ‘O-C’) residuals ∆ψ(P ) (Muinonen & Bowell 1993),

pp(P ) ∝ ppr(P )pε(∆ψ(P )), (2)

where pε can usually be assumed to be Gaussian. For the
mathematical form of pp to be invariant in transforma-
tions from one orbital element set to another (e.g., from
Keplerian to equinoctial or Cartesian), we regularize the
statistical analysis by Jeffreys’ noninformative a priori
p.d.f. (Jeffreys 1946; see also Muinonen et al. 2001),

ppr(P ) ∝
√

det Σ−1(P ),

Σ−1(P ) = Φ(P )T Λ−1Φ(P ), (3)

where Σ−1 is the information matrix (or the inverse co-
variance matrix) evaluated for the orbital elements P , Φ
contains the partial derivatives of right ascension (R.A.)
and declination (Dec.) with respect to the orbital ele-
ments, and Λ is the covariance matrix for the observa-
tional errors. By the choice of the a priori p.d.f., the
transformation of rigorous p.d.f.’s becomes analogous to
that of Gaussian p.d.f.’s.

The final a posteriori orbital-element p.d.f. is, with the
help of the χ2 evaluated for the elements P ,

pp(P ) ∝
√

det Σ−1(P ) exp

[

−
1

2
χ2(P )

]

,

χ2(P ) = ∆ψT (P )Λ−1∆ψ(P ). (4)

As a consequence of securing the invariance in orbital-
element transformations, e.g., ephemeris uncertainties
and collision probabilities based on the orbital-element

p.d.f. are independent of the choice of the orbital element
set. Note that assuming constant ppr is acceptable, when
the exponent part of Equation 4 confines the p.d.f. into a
phase-space regime, where the determinant part reduces
to a constant.

2.2. Linear Approximation

In the validity regime of the linear approximation,

χ2(P ) ≈ χ2(P ls) + ∆P T Σ−1(P ls)∆P ,

∆P = P − P ls,

det Σ−1(P ) ≈ det Σ−1(P ls), (5)

whereP ls denotes the least-squares orbital elements. The
resulting orbital-element p.d.f. is Gaussian,

pp(P ) ∝
√

det Σ−1(P ls) ·

exp

[

−
1

2
∆P T Σ−1(P ls)∆P

]

. (6)

The least-squares orbital elements P ls and their covari-
ance matrix Σ constitute the full, concise solution to the
inverse problem in the linear approximation.

The linear approximation follows from the solution of the
inverse problem via differential corrections, expressed in
the following iterative way:

P ls ← P ls +
[

ΦT (P ls)Λ
−1Φ(P ls)

]−1
·

ΦT (P ls)Λ
−1∆ψ(P ls)

{

Φ2k−1,j = cos βk
∂λ
∂Pj

(P ls, tk),

Φ2k,j = ∂β
∂Pj

(P ls, tk),

k = 1, 2, 3, . . . , N. (7)

Upon convergence, the differential correction procedure
yields the nonlinear least-squares solution of the orbital
elements. The covariance matrix of the elements follows
in a linear approximation in the proximity of the least-
squares orbital elements,

Σ(P ls) =
[

ΦT (P ls)Λ
−1Φ(P ls)

]−1
. (8)

The strict linear approximation would involve the simul-
taneous linearization of the exponential and determinant
parts of the rigorous a posteriori p.d.f. Although compu-
tationally accessible, first, the strict linearization would
result in the abandonment of the commonly used differ-
ential correction procedure to obtain the best-fit orbit and,
second, would introduce second-order partial derivatives
into the search for the orbital elements at the tip of the
a posteriori p.d.f. Sacrificing some of the mathematical
rigor, without an effect on the accuracy of the results fol-
lowing, we adopt the more practical definition for the lin-
ear approximation in Equation 5.

2.3. Volume-of-Variation Sampling

The a posteriori p.d.f. in Equation 4 allows the deriva-
tion of a local linear approximation in the orbital-element
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phase space (Muinonen et al. 2004, Virtanen & Muinonen
2004). We can select one or more elements as ‘the el-
ements to be varied’ systematically and derive a linear
approximation for ‘the remaining elements to be fitted’.
For simplicity, we illustrate the local linear approxima-
tions below in the case of a single mapping element and
note that the formulation is analogous for more numerous
mapping elements.

We rewrite the a posteriori p.d.f. in Equation 4 explic-
itly in terms of the mapping element Pm and the five re-
maining elements P ′ (here and below, the prime denotes
five-dimensional quantities),

pp(Pm,P ′) ∝
√

det Σ−1(Pm,P ′) ·

exp

[

−
1

2
χ2(Pm,P ′)

]

,

χ2(Pm,P ′) = ∆ψT (Pm,P ′)Λ−1∆ψ(Pm,P ′).(9)

For a given Pm, we define the local linear approximation
as follows,

pp(Pm,P ′) ∝
√

det Σ−1(Pm,P ′

ls) ·

exp

[

−
1

2
χ2(Pm,P ′

ls)

]

·

exp

[

−
1

2
∆P ′T Σ′−1(Pm,P ′

ls)∆P
′

]

,

∆P ′ = P ′ − P ′

ls(Pm), (10)

where P ′

ls = P ′

ls(Pm) is the local least-squares solution
for the elements P ′. Note that both Σ−1 and Σ′−1 enter
the local linear approximations above. The sequence of
orbital elements Pm,P ′

ls(Pm) defines the line of varia-
tion in the orbital-element phase space.

The local covariance matrix Σ′ defines a hyperellipsoid
centred at the local least-squares orbital elements (cf.
Muinonen 1996),

∆χ2(P ′) = ∆P ′T Σ′−1∆P ′ = ∆χ2
0, (11)

where ∆χ2
0 is a constant. The boundaries of, for example,

the commonly used 68.3% or 95.4% -probability hyper-
ellipsoids are ∆χ2

0 ≈ 5.89 or ∆χ2
0 ≈ 11.3, respectively.

It is convenient to express the differences ∆P ′ in terms of

the standard deviations σ′j =
√

Σ′jj (j = 1, . . . , 5) and

to utilize the dimensionless correlation matrix C ′; with
the help of the diagonal standard deviation matrix S ′,

∆Q′ = S′−1∆P ′,

C ′ = S′−1Σ′S′−1,

S′jk = σ′j δjk, j, k = 1, . . . , 6, (12)

where δjk is the Kronecker symbol. The hyperellipsoid
is thus defined by

∆Q′T C ′−1∆Q′ = ∆χ2
0, (13)

where all the parameters are dimensionless. The eigen-
values λ′j (j = 1, . . . , 5) for the correlation matrix C ′ are

normalized variances along the principal axes of the hy-
perellipsoid, the directions of the axes being given by the
orthonormal eigenvectors X ′

j ,

C ′X ′

j = λ′jX
′

j , j = 1, . . . , 5. (14)

Since C ′ is a real and symmetric matrix, the eigenprob-
lem is readily solved via Jacobi transformations (Press et
al. 1994).

Once the eigenvalues and eigenvectors are available, the
shape and orientation of the hyperellipsoid become trans-
parent. For example, points on the hypersurface in the
directions of the principal axes corresponding to a given
∆χ2

0 are

P ′±

j = P ′

ls ±
√

∆χ2
0 λ′jS

′X ′

j ,

j = 1, . . . , 5. (15)

The local linear approximations allow the study of the
validity of the global linear approximation: if the local
least-squares solutions do not fall on a straight line or if
the local covariances differ, the global linear approxima-
tion must be rejected. The covariance matrix differences
can be measured using, for example, the L2 metric for
matrices, that is, summing the squares of the matrix ele-
ment differences.

On one hand, the straightforward application of the lo-
cal linear approximations suffers from shortcomings: it
requires the storage of large numbers (several hundreds
to thousands) of mapping elements, covariance matrices,
and weight factors, without certainty of validity across
the regime studied for the mapping element. On the other
hand, as shown below, the local linear approximations
can constitute an invaluable guide, in the orbital-element
phase space, to the proximity of orbit solutions for the
rigorous inverse problem.

The validity of the local linear approximations depends
on the set of orbital elements selected. Whereas Kepler-
ian elements are attractive because of their conceptual
clarity, Cartesian elements can in general be preferable.
We can offer the following reasoning based on Gaus-
sian random variables to support a choice of a certain
Cartesian set of orbital elements. Select an epoch for
the orbital elements coinciding with one of the obser-
vation dates close to the mid-point of the observational
time arc. Consider then orbital elements that are the
Cartesian position vector (X,Y, Z)T and velocity vector
(Ẋ, Ẏ , Ż)T , where the z-axis points in the topocentric
direction of the object and the x and y axes coincide with
the R.A. and Dec. axes, respectively. In particular, for ex-
iguous observational data, the potential Gaussian charac-
teristics of the four transverse orbital elements (X,Y )T

and (Ẋ, Ẏ )T are suggested by the sum rule for Gaussian
random variables: adding or subtracting Gaussian ran-
dom variables results in random variables that are Gaus-
sian. Here (X,Y )T and (Ẋ, Ẏ )T can be taken as rough
estimates of the mean position and position differences
on the sky plane. Thus, the two natural mapping elements
are the line-of-sight distance (range) and velocity (radial
velocity or range rate) of the object at the given epoch.
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It is our goal to draw sample orbits from the rigorous
orbital-element p.d.f. with the help of the local linear ap-
proximations. First, we specify the variation interval for
the mapping element with the help of the covariance ma-
trix Σ derived in the global linear approximation and em-
phasize that the variation interval must be subject to iter-
ation. For example, one may utilize the one-dimensional
3σ variation interval as given by the linear approximation
so that

Pm ∈ [Pm,ls − 3σm, Pm,ls + 3σm], (16)

where Pm,ls is the global least-squares value for the map-
ping element. Second, the remaining elements are sam-
pled with the help of the local intervals of variation so
that

P ′ = P ′

ls(Pm) +

5
∑

j=1

(1− 2rj) ·

√

∆χ̃2λ′j(Pm)S′(Pm,ls)X
′

j(Pm), (17)

where rj ∈ (0, 1) (j = 1, . . . , 5) are independent uni-
form random deviates and ∆χ̃2 is a scaling parameter to
be iterated so that the entire orbit solution space is cov-
ered and the final results have converged. Initially, one
may start with ∆χ̃2 = 11.3 and slowly increase its value.
S′(Pm,ls) designates the single standard deviation matrix
used throughout the interval of the mapping parameter,
which allows a straightforward debiasing of the sample
orbits at the end of the computation. Here, S ′(Pm,ls) is
the S′ matrix evaluated at the global least-squares value
of the mapping element Pm.

In Equation 17, we sample the local phase-space volume
using the principal-axis directions following from the lo-
cal linear approximation, after diagonalization by the so-
lution of the eigenproblem in the units specified by the
S′ matrix. In the present context, the shape of the local
sampling volume is that of a five-dimensional rectangular
parallelepiped.

In practical computations, we need to discretize the in-
terval of the mapping element and, after solving the five-
dimensional local least-squares problem, interpolate the
interval parameters for Equation 17.

Once the entire variation-interval map is available across
the interval of the mapping parameter, trial orbits are gen-
erated in a straightforward way. First, a value for the
mapping orbital element is obtained from uniform sam-
pling over the mapping interval. Second, the remaining
five elements are generated by interpolating their varia-
tion intervals based on the precomputed map. Third, the
trial orbit qualifies for a sample orbit if it produces an
acceptable fit to the observations. Each sample orbit is
accompanied by the weight factor

w(Pm,P ′) ∝
√

det Σ−1(Pm,P ′) ·

exp

[

−
1

2
χ2(Pm,P ′)

]

·

√

λ1(Pm) · . . . · λ5(Pm)

λ1(Pm,ls) · . . . · λ5(Pm,ls)
.(18)

The local linear approximations allow the generation of
trial orbits using the five-dimensional Gaussian p.d.f.’s.
In Equation 17, such an alternative approach would en-
tail the replacement of the uniform random deviate fac-
tors (1−2rj) by Gaussian deviates, and would result in
an additional debiasing Gaussian p.d.f. divisor in Equa-
tion 18. Such an approach results in larger numbers of
sample orbits close to the line of variation, which can be
desirable in cases of heavy computational burden. But,
simultaneously, less attention would be paid to the po-
tential solutions further away from the line of variation.
In the limit of large numbers of sample orbits, the two
approaches yield identical results.

Because of the noninformative a priori p.d.f., results
from VOV sampling are invariant in orbital-element
transformations. The choice of the orbital element set is,
however, nontrivial as assessed in Section 2.2: the com-
putational speed and applicability of VOV depend on the
validity of the local linear approximations as a function
of the mapping element.

2.4. Statistical Orbital Ranging

For initial orbit computation using Gaia data, we make
use of Ranging (Virtanen et al. 2001, Muinonen et al.
2001). In Ranging, two observation dates (here A and
B) are chosen from the complete observation set. The
corresponding Gaia-centric distances (or ranges RA and
RB), as well as the longitudes (λA and λB) and latitudes
(βA and βB) are MC sampled using intervals subject to
iteration, resulting in altogether 12 interval boundary pa-
rameters. Explicitly,







RA ∈ [R−

A , R+
A],

λA ∈ [λ−A , λ+
A],

βA ∈ [β−A , β+
A ],







RB ∈ [RA + R−

B , RA + R+
B ],

λB ∈ [λ−A , λ+
A],

βB ∈ [β−A , β+
A ].

(19)

Note that it is computationally efficient to generate RB

based on RA generated at an earlier stage. The boundary
values R±

B must be carefully chosen so as to secure the
coverage of the entire relevant interval in RB.

Once the two sets of spherical coordinates have been
generated, the two corresponding Cartesian positions
(XA, YA, ZA)T and (XB, YB, ZB)T lead to an unam-
biguous set of orbital elements P , based on well-
established techniques in celestial mechanics (Danby
1992).

The set of trial orbital elements P is included in the set
of sample orbital elements if and only if it produces an
acceptable fit to the entire set of observations, that is, with
the help of Equation 4,

exp

[

−
1

2
(χ2(P )− χ2(P ref))+

ln
√

det Σ−1(P )− ln
√

det Σ−1(P ref)
]

≥ cmin, (20)
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where cmin is the level of acceptance and P ref refers to
the best-fit orbital solution available, constantly updated
during the iterative computation. The acceptance crite-
rion thus becomes analogous to the ∆χ2 criterion for
Gaussian p.d.f.’s ( Equation 11).

In order to establish the uniform sampling of orbital ele-
ments P , each set of sample orbital elements is weighted
by the Jacobian of the transformation from ‘the phase
space’ of the two spherical positions (RA, λA, βA)T and
(RB, λB, βB)T to the phase space of the orbital elements,

w(P ) ∝ det

[

∂(RA, λA, βA;RB, λB, βB)

∂P

]−1

.(21)

Ranging is repeated to obtain a large number of sample
orbits, simultaneously iterating the 12 interval boundary
parameters and updating the reference orbital elements
in order to secure the coverage of the full orbit solution
space.

For Gaia, Ranging is particularly important in the case of
discoveries or recoveries of objects with large ephemeris
uncertainties. It promises to play a key role in the short-
term linkage of Gaia observations (see below).

3. PREDICTION PROBLEM

3.1. Propagation of Probabilities

The utilization of the orbital-element p.d.f.’s constitutes a
prediction problem, where additional p.d.f.’s are derived
for parameters that are functions of the orbital elements.
Following Muinonen and Bowell (1993), the joint p.d.f.
for a given setF = (F1, . . . , FK)T of functions of orbital
elements can be derived according to

p(F ) =

∫

dP pp(P ) δD(F1 − F1(P )) ·

. . . · δD(FK − FK(P )), (22)

where δD is Dirac’s function. In particular, the p.d.f.’s
for other orbital element sets, including sets propagated
to other epochs, as well as ephemerides can be estab-
lished using this relationship. Ranging and VOV sam-
pling with the subsequent propagation of the discrete sets
of orbital elements provide rigorous treatments to the pre-
diction problem.

By linearizing the arguments of Dirac’s function in Equa-
tion 22 and inserting the Gaussian orbital-element p.d.f.
of the linear approximation into the integral, a Gaussian
p.d.f. results for the functions F = (F1, . . . , FK)T of
the orbital elements. In such linearized propagation of
uncertainties, the covariance matrix for F is

ΣF = DT ΣD,

Djk =
∂Fk

∂Pj

,

j = 1, . . . , 6, k = 1, . . . ,K. (23)

The orbital-element p.d.f. allows the definition of the col-
lision probability for an individual near-Earth object in a
given interval t ∈ [t−, t+]:

Pc =

∫

Vc

dP pp(P ), (24)

where the six-dimensional volume Vc contains those or-
bital elements that lead to a collision in the given in-
terval. Evidently, extending the time interval increases
the collision probability. The definition of the collision
probability seems misleadingly simple: in practise, its
computation can be a highly demanding task (Virtanen
& Muinonen 2004, Muinonen et al. 2001).

3.2. Background for Linkage of Observations

In order to illustrate the ambiguities arising from uniden-
tified objects and unlinked observations, consider a data
base of L sets of astrometric observations of one or more
objects, the number of the objects and the linkages be-
tween the sets being unknown, and consider an additional
single test set of observations. For simplicity, assume that
the sets are internally correctly linked and identified with
a single object. There are altogether

Ltot =
L
∑

l=0

(

L
l

)

= 2L (25)

different configurations (total number of combinations)
for linking the test set with the L data base sets. Had the L
sets been mutually exclusive, i.e., belonging to different
objects, there would have been L + 1 configurations for
linking the test set with the L data base sets. For exam-
ple, assuming a small number of data base sets L = 5, the
numbers of outcome configurations are 6 and 25 = 32.
For L = 20, the numbers are 21 and 220 = 1048576, un-
derscoring the rapidly increasing confusion with increas-
ing number of unlinked observations.

As yet another example relevant for massive asteroid sur-
veys, consider two observation master sets A and B con-
sisting of LA and LB sets of observations, respectively.
Assume that the sets are internally correctly linked and
that they are mutually exclusive. The goal is to establish
the linkages from the master set A to the master set B and
thus the cross-identifications of objects. The number of
possible outcomes is the following finite sum:

Ltot =

min(LA,LB)
∑

l=0

l!

(

LA

l

)(

LB

l

)

. (26)

The terms represent all possible numbers l = 0, 1,
2,. . . ,min(LA, LB) of linkages between the master sets.
The binomial coefficients give the numbers of possible
combinations drawn from each of the two sets and the
factorial l! derives from the need to replace either one of
the numbers of combinations by the number of permuta-
tions. The sum is symmetric and the result is independent
of whether the combinations (permutations) are drawn
from sets A (B) or B (A). For example, for LA = LB = 5
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and LA = LB = 10, we obtain Ltot = 1546 and
Ltot = 234662231, respectively.

For cases with LA = LB in the example above, an ana-
lytical lower bound follows from

Ltot =

LA
∑

l=0

l!

(

LA

l

)2

≥

LA
∑

l=0

(

LA

l

)2

=

(

2LA

LA

)

. (27)

3.3. Derivation of Candidate Linkages

In what follows, we concentrate on the latter example of
two master sets of mutually exclusive, internally correctly
linked observation sets. Clearly, the master sets give rise
to LALB candidate inverse problems similar to that pre-
sented in Section 2. On one hand, the maximum number
of true inverse problems is LA + LB, corresponding to
the case where there are no linkages between the master
sets and each set of observations gives rise to an inverse
problem. On the other hand, the minimum number of true
inverse problems is max(LA, LB).

One of the first goals in the practical linkage of the obser-
vation sets is the minimization of the number of candidate
inverse problems to be studied in depth. Let ppA and ppB

correspond to the orbital-element a posteriori p.d.f.’s for
given objects in A and B, respectively. Assuming that the
objects are independent, the probability for object A (B)
residing in the phase-space volume VB (VA) of object B
(A) is

P (A ∈ VB) =

∫

VB

dP ppA(P ),

P (B ∈ VA) =

∫

VA

dP ppB(P ). (28)

These probabilities of overlap are significant: if it is pos-
sible to certify that

P (A ∈ VB) ≈ 0 , P (B ∈ VA) ≈ 0, (29)

the candidate linkage can be removed from the master list
of candidate linkages.

For overlapping p.d.f.’s, the next step is to produce the
p.d.f. that is the product of the two separate p.d.f.’s, with
the assumption that the objects are the same so that one
of the p.d.f.’s plays the role of an a priori p.d.f. of the
other,

ppAB(P ) ∝ ppA(P )ppB(P ). (30)

Let V0 be the phase-space regime of all known asteroids.
After proper normalization, it is possible to compute the
probability of overlap with the phase-space volume V0 of
all known objects,

P (AB ∈ V0) =

∫

V0

dP ppAB(P ), (31)

If the probability is vanishingly small, the candidate link-
age can again be removed from the list of candidate link-
ages. However, this step requires special attention as it is
not desirable to throw away new kinds of objects.

The probability of overlap P (AB ∈ V0) allows us to give
a probability score SJ for any candidate configuration J
consisting of KJ candidate linkages:

SJ =

KJ
∑

k=1

Pk(AB ∈ V0),

J = 0, 1, 2, 3, . . . , Jmax, (32)

where Jmax denotes the maximum number of configura-
tions arising from the given linkage problem.

The final result is an ordered list of configurations given,
for example, by the following finite sequence I:

I = {J3, J7, J1, . . .}. (33)

In the case of numerous candidate configurations, the fi-
nal derivation of the correct linkages and identifications
is carried out via new observations.

3.4. Phase-space Address-Comparison Technique

To find possible linkages needing further analysis, we
generate ephemeris clouds (R.A. and Dec.) for all ob-
jects in both sets at three common epochs, and search for
overlapping ephemerides among the objects (Granvik et
al. 2004). The choice of epochs can be optimized, but
the use of the observational mid-epoch as the first epoch
t1 is a good first approximation. The choice can be jus-
tified based on the knowledge that the ephemeris uncer-
tainty grows with increasing time elapsed since the last
observation (Muinonen et al. 1994). The second and third
ephemerides are produced by propagating orbits from the
first epoch ∆t2 = t2 − t1 and ∆t3 = t3 − t1 (for ex-
ample, 12 and 24 hours, respectively) forward in time,
respectively, and transforming the corresponding orbital
elements to ephemeris clouds. The search for similarities
among the two ephemerides is carried out efficiently us-
ing the address-comparison technique (described below).
Similar ephemerides at several epochs indicate a prelim-
inary linkage, which requires further investigation using
either Ranging (required for single-night linkages due to
short observational arcs), VOV sampling, or differential
correction of a least-squares orbit.

When searching through the bins to find overlapping
ephemerides, most time is spent checking empty bins,
which is inefficient. Instead of using the whole map, or
multidimensional array, one can assign an address to each
bin and just compare the addresses that are occupied with
orbits. For example, let us study the one-dimensional dis-
cretization of a hypervolume of an N -dimensional space.
Discretizing each dimension into mn (n = 1, 2, . . . , N)
intervals, the total number of bins becomes

Ntot = m1m2 · · ·mN . (34)
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Let the N indices of a certain bin be kn > 0 (n =
1, 2, . . . , N). That given bin obtains an address given by
the single integer

K = k1 + (k2 − 1)m1 +

(k3 − 1)m1m2 + . . .

+(kN − 1)m1m2 · · ·mN−1. (35)

When needed, the indices kn can be retrieved from K via
the following algorithm:

kN = 1 + int
K

m1m2 · · ·mN−1

kN−1 = 1 + int
K − (kN − 1)m1m2 · · ·mN−1

m1m2 · · ·mN−2

· · ·

k1 = K −

N
∑

n=2

(kn − 1)m1m2 · · ·mn−1. (36)

The transformation algorithm essentially does the same
as a basic binning algorithm. But instead of returning
the coordinates of a bin in multidimensional space (a bi-
product of the algorithm), it transforms the coordinates
to a single integer K. The integer is the individual ID-
number of a bin in the original multidimensional bin-
network. Among the essential input values for the trans-
formation algorithm are the boundary values of the mul-
tidimensional space and the bin sizes. At present we take
into account the whole sky, so the only essential input
value is the bin size, which is currently one arcmin for
both R.A. and Dec.

Because the observations of an object are inverted to
a sample of orbits, and every orbit in the sample is
transformed to three ephemerides and further to a value
K, each object will get a one-dimensional array con-
taining the K-values. One address thus represents the
ephemerides that have been computed from a single sam-
ple orbit for all three epochs. Potential identifications are
sought by comparing the K-arrays of objects in the first
set with the K-arrays of objects in the second set. The
search can move to the next candidate pair as soon as a
single pair of equal addresses, or integers, is found.

When dealing with an array of integers, the search algo-
rithm can be optimized more easily than when searching
a multidimensional array. By sorting the K-values in as-
cending order, a binary search algorithm can be used for
the search of similar elements, which significantly accel-
erates the comparison algorithm.

4. ORB-F95 AND ITS APPLICATION

Ranging, VOV sampling, and the least-squares method
are implemented in a completely independent software
bundle with Orb as the working title. Our goal is to have
a state-of-the-art set of fundamental asteroid orbit com-
putation tools that are easy to use, modify, and update.
The bundle contains tools such as I/O of different obser-
vation formats, input of JPL ephemerides, coordinate and

time transformations, several orbital inversion methods,
differential corrections, and integration.

Different sets of orbital elements can be used during the
computations, but the Cartesian elements are the basic
ones. Given such a set of tools, more advanced WWW,
single-processor, or multiprocessor applications for, e.g.,
computation of ephemerides, impact monitoring, and
identification of asteroids, can be put together and main-
tained. The goal is achieved by using a modern pro-
gramming language (Fortran 95), which allows efficient
programs, dynamical memory allocation, and easy par-
allelization, an object-oriented programming paradigm,
advanced documentation tools, and a proper error man-
agement, which greatly reduces the time spent on debug-
ging. At present, the Orb package contains some 20 000
lines of code and the fundamental routines are in place
and tested to produce correct results.

Application of Ranging to the simulated observations of
two near-Earth asteroids 1993 OM7 and 1998 OX4 is il-
lustrated in Figure 1, where we show the nonlinear col-
lapse in the extent of orbital element p.d.f.’s as a function
of improving observational accuracy. This phase tran-
sition effect is studied in more detail in the companion
paper by Virtanen et al.

5. CONCLUSION

We have described the inverse problem assuming that the
observational data consists of sky-plane positions at given
epochs. For Gaia, the data will consist of both positions
and motions and we are in the process of generalizing the
techniques to fully accommodate motion observations. It
is important to notice that the motion observations are, in
the first approximation, insensitive to the effects arising
from the physical characteristics of asteroids. During a
single passage of the asteroid through the Gaia CCD ar-
rays, for the vast majority of asteroids, the angular differ-
ence between the photocentre and barycentre (see Cellino
et al. 2005) will be constant, allowing us to carry out ac-
curate, unbiased orbit computations based on motion data
alone.
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