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ABSTRACT

The technology of modern astrometric satellites like Gaia
assures an accuracy of one microarcsecond in the mea-
surements of angles. At this level, one also has to take
into account the general relativistic effects due to most
of the Solar System planets and their largest satellites.
The aim of the RAMOD project is the construction of
a fully general relativistic data reduction scheme consis-
tent with these expectations. The project consists of the
development of subsequent models having increasing ac-
curacies and complications. Each model has been used
as a testbed for comparison with the successively more
advanced models. Here we illustrate only some of the
problems already solved or presently under investigation
for the fulfillment of our task.
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1. INTRODUCTION

Modern space technology will soon be able to provide
measurements of stellar directions to an accuracy of one
microarcsecond (µas). At this level, one has to take into
account the general relativistic effects on light propaga-
tion arising from metric perturbations due not only to
the bulk mass but also to the rotational and translational
motion of the Solar System bodies and their multipole
structure. The aim of our project is to develop a Rel-
ativistic Astrometric MODel (RAMOD) which enables
us to deduce to microarcsecond accuracy the astromet-
ric parameters of a point-like source from observations
taken by an astrometric satellite like Gaia. Up to now
we have produced several models of increasing intrin-
sic accuracy (see Figure 1). The first, called RAMOD1,
was a non-perturbative model of the static celestial sphere
where the background metric was described by the exact
Schwarzschild solution (de Felice et al. 1998), with the
Sun as the only source of gravity. In RAMOD2 (de Felice
et al. 2001) we extended the previous version to the non-
static case to include the determination of parallaxes and
proper motions. RAMOD2 has been fully tested on an
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Figure 1. Graphical representation of the evolution of the
RAMOD project.

end-to-end simulation of a Gaia-like astrometry mission
and proved capable of estimating positions, parallaxes
and annual proper motions with an accuracy of ∼ 15 µas
for stars of V ∼ 17 mag. The implementation of such
models has been exploited to investigate the potential ac-
curacy of astrometric observations in the determination of
the PPN parameter γ; a deviation of the latter from unity,
which holds in General Relativity, would signal the exis-
tence of a new fundamental interaction at the elementary
particle level. In a model called PPN-RAMOD (Vecchi-
ato et al. 2003) we showed that the factor γ can be mea-
sured with an accuracy of 10−7, i.e., two orders of mag-
nitude better than the most recent estimation by Cassini
(Bertotti et al. 2003).

All these formulations have been essential touchstones
of comparison for the more advanced many-body model
RAMOD3 (de Felice et al. 2004a) where the astrometric
problem was tackled in the presence of geometry pertur-
bations due to the bodies of the Solar System. Here we
considered a static case in which the bodies of the Solar
System are at rest during the light transit from the bound-
aries of the Solar System to the orbiting telescope; this
model has been fully developed and tested up to the or-
der of 1/c2, c being the velocity of light in vacuum. Al-
though accurate to the milliarcsecond level as expected,
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and therefore not suitable for a realistic data reduction
procedure, such a formulation is essential for providing a
necessary test case for comparison with a more compre-
hensive model. We have in fact developed an extension of
RAMOD3 into a multi-modular dynamical model accu-
rate to one microarcsecond which means retaining terms
of the order of 1/c3. This is called RAMOD4, now ready
to be tested (de Felice et al. 2004b).

The basic mathematical problem which underlies all
RAMOD models is that of inverse ray tracing which
amounts to reconstructing the space-time trajectory of
light from the event of observation at the satellite to that
of emission at the star. Evidently one has to solve a
system of four coupled second order partial differential
equations, the unknowns being the stellar space-time co-
ordinates. Essential requirements for solving this system
are the definition of a coordinate parameterization over
a domain at least as large as our Galaxy and a suitable
solution of the boundary value problem.

2. THE MANY FRAMES OF THE RAMOD
SCHEME

The most convenient and generally accepted choice of co-
ordinates is one which allows the space-time generated
by the Solar System bodies to be described by the fol-
lowing form of the metric:

gαβ = ηαβ +
∑

a

h
(a)
αβ + O(h2) (1)

where the sum is extended to all Solar System bodies.
In this approximation, the metric tensor (1) has in gen-
eral a non-vanishing term g0i = O[(1/c)3] and the non-
linearity of the gravitational field is confined to terms
O[(1/c)4] in the metric coefficients.

In August 2000 the General Assembly of the IAU stated
that a solution like (1) has to be adopted to define the ref-
erence frames and time scales in the Solar System. At the
first Post-Newtonian level of approximation, the metric
tensor (1) takes the form:

g00 = −1 +
2w

c2
−

2w2

c4
+ O(c−5) (2)

g0i = −

4wi
c3

+ O(c−5) (3)

gij = δij

(

1 +
2w

c2

)

+ O(c−4) (4)

with i, j = 1, 2, 3. In the equations above, w represents a
generalization of the (total) Newtonian potential and wi is
a vector potential describing the dynamical contribution
to the background geometry due to the relative motion of
the gravitating sources as well as the peculiarities of their
extended structures.

The spatial coordinates which underly this form of the
metric are Cartesian-like, taken along axes pointing to
far distant sources and having the origin at the centre of
mass of the Solar System; this frame will be termed the
Barycentric Celestial Coordinate System (BCRS). The

time coordinate has been chosen according to the most
recently IAU recommendations.

The surfaces at t =constant are the set of points hav-
ing as time coordinate the one measured by an observer
at rest at the barycentre of the Solar System. These are
not surfaces of simultaneity for observers at rest with re-
spect to the spatial BCRS grid because of the presence
of mixed terms, i.e., g0i, in the background metric. The
rest space of these observers is locally different from the
t =constant surfaces but, since this difference contributes
to terms of order higher than 1/c3, it can be neglected
without loss of precision. Hence, to the required accu-
racy, the rest space of the locally static observers will co-
incide with the coordinate space of the BCRS. The proper
time of these observers is proportional to the coordinate
time by a correction factor which depends on the gravi-
tational potential at their location. Therefore, the history
of each of these observers is described by a line parallel
to the (local) coordinate time direction and the tangents
to these lines form a vector field given by the following
expression:

ûα =
dxα

dσ̂
= eψδα0

ûα = g0αeψ (5)

where eψ = (dt/dσ̂) = (−g00)
−1/2. The integral

curve of û̂ûu through each space-time point identifies a lo-
cal barycentric observer.

It is clear that while the coordinate system fixed at the
Barycentre of the Solar System provides the basic coor-
dinate representation of whatever tensorial quantity we
shall be dealing with, the physical interpretation of any
local measurement is only possible if we refer it to a lo-
cal barycentric frame. Consider a light ray propagating
in space-time from a distant star to an orbiting satellite.
Its motion in space-time is described mathematically by a
null vector, say kkk, which satisfies an appropriate differen-
tial equation written in terms of coordinate components
referred to the BCRS. However, we can associate a phys-
ical meaning only to its spatial direction, identified by
the local barycentric observer as the line of sight to the
observed object. This can only be defined by a suitable
projection of the general light-like vector kkk into the rest
space of the local barycentric observer. In this way we
identify a new vector field which can be given a direct
physical meaning and can be expressed in terms of the
solutions of our integration procedure.

There are other reference frames which enter our model.
We shall only mention here the one comoving with the
satellite. This frame is identified by means of tensorial
quantities (tetrad) whose components are always referred
to the BCRS but physically describe the rest space and
proper time of the satellite-observer. Light reaching the
satellite will carry information which will be encoded in
the satellite frame and then related by a suitable non triv-
ial mathematical procedure to the boundary values of our
ray tracing problem. Fixing the satellite frame is in itself
a rather awkward procedure since the satellite attitude is
the result of several independent states of motion, as we
show next.
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3. THE BOUNDARY VALUE PROBLEM AND
THE SATELLITE ATTITUDE

The problem of fixing the boundary conditions has been
tackled and fully solved analytically up to 1/c3 in two
specialized models termed RAMODINO1 (Bini & de Fe-
lice 2003) and RAMODINO2 (Bini et al. 2003). The
first treats the satellite-observer as a point orbiting the
Sun with a generic equation of motion. The second de-
scribes the satellite-observer’s attitude and motion strictly
following Gaia’s specifications, namely: the centre of
mass moves on a Lissajous-type orbit around the Sun-
(Earth-Moon) Lagrangian point L2; the satellite spins
with a proper time rate of one turn every 6 hours about
its X−axis. This axis has a 50◦ inclination with respect
to the Earth-Sun direction and precesses about the Sun di-
rection with a period of 70 days. Fixing a reference frame
which is adapted to this more realistic configuration re-
quired a substantial mathematical complication which,
however, has been treated analytically and is in a form
ready to enter a numerical implementation. As already
stated, this frame (which we call the attitude frame) is co-
moving with the satellite and identifies in a natural way
the rest space and proper time of the satellite-observer.
In our case the boundary value problem is solved when
one is able to express the space-time coordinate compo-
nents of the line-of-sight four-vector relative to the local
barycentric observer in terms of the observations made
in the satellite attitude frame. The observations consist
in the cosine directions that the spatial line-of-sight of
the incoming light signal makes with the spatial direc-
tions of the attitude frame at the time of observation.
RAMODINO2 solves this problem to the order of 1/c3.
We verified that, by dropping all 1/c3 terms, the solutions
of Bini et al. (2003) obey to the obvious requirement of
reproducing the case of RAMOD3 which is accurate to
1/c2.

We have assumed up to now that the absolute satellite at-
titude is known with an arbitrary accuracy. However, this
will not be true in practice. The expected attitude error, in
fact, will be propagated in our formulation of the bound-
ary conditions inducing in such a way an error in the solu-
tion of the light path integration. However, in the foreseen
data reduction scheme, the satellite attitude will be part of
the unknowns, as it is expected to be reconstructed using
the satellite observations. Thus, an ongoing effort of the
RAMOD project is the set-up of a specific data reduction
model which includes the treatment of the attitude itself.

4. THE RETARDED TIME CORRECTIONS

It is clear that the motion of the Solar System planets with
respect to the BCRS cannot be ignored during the flight
time of a light signal from a star to the satellite, hence our
relativistic treatment of light propagation requires that
one takes into account the retarded time corrections. This
means that at any point P along the light path and at a
coordinate time t, the metric coefficients h

(a)
αβ (t) gener-

ated by the ath source of the Solar System, are deter-
mined when that source was located at a point Q of its
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Figure 2. Pictorial representation of the problem of the
retarded distance.

trajectory at a coordinate time t′ where t′ = t − r(a)/c
where c is the velocity of light in vacuum. Here r(a) is
the spatial distance calculated in the rest frame of the lo-
cal barycentric observer at P between P and the point
Q′ fixed by the intersection of the coordinate time-line
stemming from Q with the surface t =constant. Clearly
Q and Q′ have the same spatial coordinates. The point-
events P and Q′ are simultaneous to each other only up
to terms of the order of (1/c2) however this accuracy
is sufficient for our purposes since the retarded distance
r(a)(t) will enter terms of the order of (1/c2) at least. The
ath source of gravity has a velocity v(t) with respect to
the local barycentric observer therefore it will cross the
surface t =constant at a point Q̃ which is at a distance
r
(a)
0 (t) from P (see Figure 2). Since the quantity r

(a)
0 (t)

at each time t is known from the ephemerides and t is our
integration variable, our task is to express the retarded
distance r(a)(t) in terms of r

(a)
0 (t). This relation is ob-

viously not trivial and depends on the planet’s velocity
and on the spatial distance r̃(a)(t) between the points Q̃
and Q′. This relation takes the general form, for any (a):
r(t) = r[r0(t), r̃(t), v(t)]. Clearly r̃(t) depends implic-
itly on r(t) hence the above equation is of the Kepler type
and requires a numerical treatment.

5. CONCLUSION

The final product of our RAMOD project is a structured
general relativistic astrometric model, accurate to one
microarcsecond, which can be adapted to many differ-
ent satellite settings and orbital specifications. The the-
oretical construction is supported by a software package
which will serve for testing the reliability of the model.
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