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ABSTRACT

Gaia will make accurate photometric and astrometric ob-
servations of thousands of asteroids in sparse epoch se-
quences. We show that sparse photometric data are usu-
ally sufficient for obtaining the sidereal period, the pole
direction, and a coarse estimate of the global shape (or bi-
nary character) of the target. Some light-scattering char-
acteristics (solar phase function for the Gaia phase angle
range) are also obtained. Furthermore, we show that the
photocentre offset effect of ultraprecise astrometry can be
efficiently combined with photometric data sets to yield
improved physical models of asteroids. This is done by
solving the full inverse problem for the target’s orbit, size,
shape, spin state, and scattering properties. The shape
and the spin state of the target are more accurate than
from photometry alone, and the barycentre residuals for
the orbit are considerably smaller than those from uncor-
rected (or crudely corrected) astrometric measurements.
This scheme also removes the double-pole ambiguity of
photometrically derived spin states of targets close to the
plane of the ecliptic.
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1. INTRODUCTION

During its mission, Gaia will observe thousands of as-
teroids in sparse but well-distributed time sequences.
A typical number of accurate brightness measurements
for one asteroid’s sequence is between 50 and 100. In
Kaasalainen (2004), it was shown that such a sequence is
sufficient for revealing the basic physical characteristics
of the target, and that such sequences can be obtained
with both ground-based and satellite-platform calibrated
photometric surveys.

While photometric observations form a stable modelling
basis by providing a global-scale physical model of the
target (Kaasalainen et al. 2001), complementary data can

efficiently be used to refine this model. Indeed, multi-
datainversion, i.e., using all available data simultaneously
for constructing a model of the target, has become an im-
portant concept particularly for small Solar System ob-
jects. For example, even one good Doppler radar pro-
file can resolve non-convex details for a photometrically
well-observed target (Kaasalainen 2003). Other such
sources are, e.g., interferometry, adaptive optics snap-
shots, and occultation timings.

An obvious way of giving further boost to the sparse-set
photometric modelling prospect is to add complemen-
tary data to the data set with, e.g., a few additional de-
tailed lightcurves, radar scans, or snapshots. In connec-
tion with Gaia, a convenient option of obtaining com-
plementary data is automatically provided by the astro-
metric observations. The characteristics of the astromet-
ric photocentre-barycentre offset effect for asteroids were
discussed in Kaasalainen & Tanga (2004), where we also
noted that this effect alone is not sufficient for providing
information for asteroid modelling. Here we will show
that, combined with sparse photometric data, the photo-
centre offset is a useful source of information in the in-
verse problem.

2. INVERSION OF SPARSE PHOTOMETRY

Photometric sequences can directly be analyzed with the
general technique of Kaasalainen et al. (2001), where we
minimize the photometric chi-square residual χ2

pm com-
prising the observed and modelled brightnesses Li, L(ti):

χ2
pm =

N
∑

i=1

[L(ti)− Li]
2 (1)

If the calibration accuracy of Li is at least about 0.05
mag, the procedure finds the global minimum and con-
verges very robustly (Kaasalainen 2004). The best side-
real period of the target peaks quite strongly in the initial
search (Figure 1), after which the pole and shape can be
refined to obtain the best fit (Figure 2). This performance
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Figure 1. Chi-square as a function of initial period guess
for simulated Gaia data for an MBA-target. The correct
period of 9 h clearly stands apart.

Figure 2. Simulated observations (asterisks and dotted
line) and the best model fit (diamonds and dashed line)
for the MBA-case; photometric noise and fit rms devia-
tion are both 0.03 mag.

is possible because the underlying physical model intro-
duces strict consistency constraints, i.e., we have much
more information than if we treated the time sequence
without physical modelling as in standard time series
analysis. This requires good temporal coverage: observa-
tions over several years should find the target in various
observing geometries. The light-scattering behaviour of
the object can typically be modelled with the exponential-
linear solar phase function (Kaasalainen et al. 2001) par-
ticularly as Gaia observations tend to be in the linearly
dominated solar phase range (with the slope as a free pa-
rameter).

3. INVERSION OF COMBINED SPARSE
PHOTOMETRY AND ASTROMETRY

In addition to refining photometry-based models, ultra-
precise astrometry can be used to solve for the object’s
size and orbit, and for removing the common photomet-
ric ±180◦–ambiguity in the ecliptic longitude of the pole
direction for asteroids moving close to the plane of the
ecliptic.

The astrometric photocentre offset is closely related to
the disc-integrated brightness L of the target. In the ob-
ject’s own coordinate system, the photocentre is defined
by

xpc =
1

L

∫

A

x dL (2)

where the integration region A is over the illuminated and
visible parts of the surface, and a surface patch at x con-
tributes the amount dL to the observed total brightness.
The plane-of-sky (POS) projection of xpc depends on the
target’s rotation parameters and the observing geometry
(Kaasalainen & Tanga 2004).

The inverse solution is found by minimizing the objective
function

χ2 = χ2
pm + Λχ2

pc (3)

where Λ is a suitable weight factor for the astrometric
part χ2

pc which is a function of POS projections of the
orbit and the photocentre offset as given in Kaasalainen
& Tanga (2004):

χ2
pc =

N
∑

i=1

[cos2 δi (αpc(ti)−αi)
2+(δpc(ti)−δi)

2] (4)

where (αi, δi) and (αpc(ti), δpc(ti)) are, respectively, the
observed and the modelled photocentre POS positions.
The epoch sequences ti, i = 1, ..., N for the astrometric
and photometric points are taken to be the same in the
example presented here, but this choice is irrelevant.

Since the photocentre effect is extremely small, of or-
der milliarcseconds (mas), the POS positions are best de-
fined and computed by using a fixed nearby reference
orbit (given by suitable corresponding orbital parame-
ters) and its corresponding POS projections at epochs
ti. Such a reference orbit is given by, e.g., the usual
best-fit (osculating) orbit solution directly from (αi, δi)
(here we assume that all the observations can be at-
tributed to the correct object; the linking problem par-
ticularly for previously unknown projects is a separate
subject studied elsewehere). Here we take the six or-
bit parameters to be the Cartesian position and veloc-
ity coordinates at some initial epoch t0, and all osculat-
ing effects are directly introduced through the perturb-
ing forces in the integration of the equations of motion.
Thus the orbit parameters of the reference orbit are the
six constants (r0,v0) = (r(t0),v(t0)), and the orbit
is the function r(t) = r(r0,v0, t). The nearby orbits
r
′(t) = r(r0 +∆r0,v0 +∆v0, t) are given by the differ-

ence ∆r = r
′ − r through the transition matrix:

∆r(t) =
∂r(t)

∂(r0,v0)

(

∆r0

∆v0

)

(5)

The corresponding POS position changes by

(

∆α(t)
∆δ(t)

)

=
∂

∂r
(α[r(t), r⊕(t)], δ[r(t), r⊕(t)])∆r(t)

(6)
where r⊕ is the position of the observer. Thus the or-
bit parameters to be solved for in the inverse problem
are the initial deviations (∆r0,∆v0) from the adopted
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reference orbit (and (α, δ) in the square terms of Equa-
tion 4 can be replaced by (∆α,∆δ)). For accurate orbit
integration to be used in the eventual Gaia analysis, the
transition matrix for the reference orbit can be obtained
simultaneously with the integrated r. In addition to the
six initial phase-space coordinates, further adjustable pa-
rameters such as the masses of perturbing bodies can be
introduced through the orbit integration by using addi-
tional partial derivatives of r(t). For the example in this
paper, we use just the two-body Kepler orbit as this does
not change the conclusions. Thus the transition matrix
reads here

∂r(t)

∂r0

= f(t)I + r0 ⊗
∂f(t)

∂r0

+ v0 ⊗
∂g(t)

∂r0

(7)

∂r(t)

∂v0

= g(t)I + r0 ⊗
∂f(t)

∂v0

+ v0 ⊗
∂g(t)

∂v0

(8)

with the reference orbit given by Gauss’ f, g-functions
(see Danby 1987; Kaasalainen & Laakso 2001) as r(t) =
f(r0,v0, t)r0 + g(r0,v0, t)v0, I is the identity matrix,
and the outer product is defined by (a⊗ b)ij ≡ aibj .

We show the POS photocentre plots such that the origin
of the plot is comoving with the reference orbit POS loca-
tion. The photocentre observations (pluses) are thus the
full deviations from this orbit. The corresponding model
points (asterisks) are rendered as the residuals between
the observed and modelled points as in Kaasalainen &
Tanga (2004), so the tighter the asterisk group around the
origin, the better the model fit. In Figure 3, we first show
this plot for the photometric inverse spin/shape solution
of the main-belt asteroid (MBA) Gaia example of Fig-
ures 1 and 2. Only the size of the shape solution has been
optimized here (as it is not included in the photometric
inverse problem). The target (a Gaspra-like body in a
Vesta-like orbit) was chosen to be 180 km wide across its
largest dimension, with the pole direction at the ecliptic
longitude and latitude (λ, β) = (90◦, 90◦), and sidereal
rotation period P = 9 hours. (As shown in Kaasalainen
& Tanga (2004), all realistic scattering models produce
virtually the same photocentre locations within the prac-
tical astrometric accuracy for asteroids.) The pole ob-
tained in photometric inversion of the 69 Gaia data points
is at (λ, β) = (92◦,101◦) with P = 9.00001 h. The
photocentre offset scatter is reduced somewhat in ∆α-
direction, but the result is obviously not as good as for
a model from a large photometric data base as shown in
Kaasalainen & Tanga (2004). This indicates that it would
be useful to improve the model by fitting astrometry and
photometry simultaneously.

We assume here that the initial guesses for the combined
astrometry and photometric inverse problem are the so-
lutions of the separate problems as above and can be ex-
pected to be already in the global minimum area of the
parameter space, so no global parameter scanning grid is
needed. In any case, such a grid is readily implemented
whenever necessary, so we do not comment further on
this aspect here.

The objective function is minimized as in Kaasalainen
et al. (2001) by using the Levenberg–Marquardt algo-
rithm and a function series for the radii of the shape
model. A sphere is usually the best choice for an initial

Figure 3. Photocentre observations (pluses) and the
residuals (asterisks) of the modelled photocentre loca-
tions for the shape/spin model from photometric Gaia
data only.

Figure 4. Photocentre observations (pluses) and the
residuals (asterisks) of the modelled photocentre loca-
tions for the shape/spin and orbit model from combined
astrometric and photometric Gaia data.

shape. The only additional parameters are now the initial
orbit values (∆r0,∆v0). The result is shown in Figure 4:
the residuals are now much smaller and the shape solution
in Figure 5 looks basically similar to the original one in
Figure 6, with corresponding dimensions – a remarkable
result as we use only 69 epochs. The improved pole posi-
tion is at (λ, β) = (90◦,93◦) with P = 9.0000003 h, and
the position and velocity deviations from the correct val-
ues are (0.68 km, 5.48 km, −0.74 km) and (−0.27 mm/s,
0.05 mm/s, 0.01 mm/s). The accuracies of the latter
are, of course, due to the idealized knowledge of orbital
physics, but they serve to illustrate the robust orbit con-
vergence properties as the corresponding residual scatter
due to the orbit solution is less than 1 mas.

The model photocentres thus fit the observed ones prac-
tically down to the astrometric inaccuracy level. Any
tighter astrometric residuals can be obtained only at the
expense of fast decreasing goodness of the photometric
fit. The best results seem to be obtained by letting the
photometric χ2

pm
get some 10%−20% larger than the

value at Λ = 0.
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Figure 5. The shape solution for the combined photomet-
ric and astrometric inverse problem, obtained with only
69 epochs.

The only parameter that may have a poorly defined initial
value is the size, so the expected size range may have a
number of local χ2–minima. An initial size scan is re-
quired with at least some 10% intervals, usually meaning
a few guesses.

Our example also establishes the scaling properties of the
inverse problem: typically astrometric accuracy of or-
der 1% of the apparent diameter of the target is needed
to fully exploit astrometric data in the multidatainver-
sion scheme. Thus astrometric photocentre accuracy of
1 mas is typically sufficient for this kind of modelling for
targets with apparent diameter of roughly 100 mas, and
0.1 mas accuracy would already reach 10 mas–diameter
class. Due to asteroids’ motion, their astrometric accu-
racy levels cannot be expected to be as good as for stellar
objects, but 1 mas is expected to be generally reachable
and even 0.1 mas should be possible in some cases (Hes-
troffer & Berthier 2005).

In addition to size ambiguity, photometric inversion often
cannot properly distinguish between two pole solutions
some 180◦ apart in ecliptic longitude if the target is close
to the plane of the ecliptic. Astrometric data have the im-
portant possibility to remove this ambiguity as the mirror
shape solutions for the mirror poles have quite different
POS projections even though their disc-integrated bright-
nesses were the same. Thus the residuals for the wrong
pole are clearly larger (Figure 7).

4. CONCLUSIONS

Gaia photometry is usually sufficient for basic asteroid
modelling, and its combination with high-precision as-
trometric data in a full inverse problem can be used for
more accurate modelling via the photocentre offset ef-
fect. We also get a size scale for the shape solution. This

Figure 6. Image of the original shape.

Figure 7. Photocentre observations (pluses) and the
residuals (asterisks) of the modelled photocentre loca-
tions for the wrong 180◦-shifted pole.

mode requires accurate modelling of orbits, so the masses
of perturbing asteroids need to be solved for in addition
to the initial orbital parameters. We are now investigat-
ing whether ‘tougher’ cases such as binary asteroids are
distinguishable from sequences contaminated by outliers
and can be modelled as robustly as ‘ordinary’ targets.
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