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GAIA-ASSISTED ON-BOARD DETECTION OF MOVING OBJECTS
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ABSTRACT

Objects that are moving relative to the stars (e.g., NEOs)
are potentially detectable in the Gaia field of view. This
work investigates, from simulated data, how this detec-
tion can be performed in the astrometric field of view on
the ground. The objective of this work is twofold:

• to provide a ‘flag’ (Boolean) for each astrometric
field crossing of each object, indicating whether or
not an object is moving.

• to provide a first estimate of the velocity of the ob-
ject at the time of the field crossing.

This information is determined from data available on-
ground from the crossing of one astrometric field of view.
The work includes a ‘miniature comparative survey’ of an
array of applicable statistical methods from the fields of
regression and trend testing, and an assessment of the ve-
locity determination as a function of the magnitude and
the kind of Solar System object, tested on a population of
Main Belt asteroids, and on a simulated NEO population
(Bottke et al. 2002). Due to the limited across-scan ac-
curacy owing to the binning, the paper deals solely with
along-scan data.

Key words: Gaia; Motion detection; Velocity estimation;
Trend testing; NEO; Asteroid.

1. MOTION DETECTION

Figure 1 shows, as a function of actual object velocity, the
probability that the object is flagged as stationary. The
‘ideal’ curve thus is a δ-function at v = 0. Four separate
methods are compared. For a stationary object (v = 0σ),
all methods have had their thresholds adjusted such that
91.7% of the objects are correctly categorized as station-
ary objects. As an example, looking at v = 0.25σ, i.e., a
velocity of one fourth of the measurement error, the ‘Chi
squared’ method erroneously characterizes the object in
question as stationary in about 22% of the measurement
series, whereas the ‘Mann-Kendall’ method makes this
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Figure 1. Probability, as a function of actual object ve-
locity, that an object is flagged as stationary. One field
crossing, five measurements.

mistake in about 36% of the series. For velocities larger
than one third of the measurement error, the ‘Chi squared’
method correctly flags a moving object in 95% of the
cases.

Sets of twelve measurements (ASM and AF1 to AF11)
yield a different result, as shown in Figure 2. Here,
the ‘regression’ method appears the best, offering 95%
correct decisions, even for velocities slightly less than
one tenth of the measurement error, whereas the ‘Chi
squared’ method yields a less admirable performance.

In Figures 1 and 2, the horizontal axes have been normal-
ized by dividing the actual object velocity (in mas s−1)
by the standard deviation of simulated measurement er-
ror (from the centroiding), σ, in mas. The unit of the
horizontal axes is thus ‘sigmas per second’, which makes
the plots independent of the actual value of σ.

2. THE APPLIED TESTS

2.1. Successive Squared Differences

For a series of n values x1, x2, . . . , xn taken from a Gaus-
sian (or normal) distribution, the test statistic is calculated
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Figure 2. Probability, as a function of actual object ve-
locity, that an object is flagged as stationary. One field
crossing, twelve measurements.

as follows (see Aı̈vazian (1978)):

γSD(n) =
1

2(n− 1)s̄2(n)

n−1
∑

i=1

(xi+1 − xi)
2 (1)

where s̄2 is the unbiased sample variance estimate.

For a series of completely random observations (i.e., the
case of zero velocity), we expect γSD(n) = 1. In case of
a trend in the position measurements, i.e., in the case of
non-zero velocity, we expect γSD(n) < 1.

2.2. Mann-Kendall

Under the null hypothesis, i.e., when the observations are
independent and identically distributed, the sign (plus or
minus) of the difference between any pair of observations
is expected to be completely random. This observation
forms the basis of the Mann-Kendall test (Mann 1945).
A skewed sign census indicates a trend in the series of
measurements. The test statistic of this test is the sum of
the sign-function taken over all measurement differences.

γMK(n) =

n
∑

i=2

i−1
∑

j=1

sign(xi − xj) (2)

The fact that the test statistic is an integer imposes a limi-
tation on the freedom to choose detection thresholds, cf.,
the seemingly arbitrary thresholds of 91.7% and 95.5%
in Figures 1 and 2, respectively.

2.3. Chi Squared (χ2)

This test is based on the ratio of the empirical variance,
s̄2, to the expected variance, i.e., the expected position
standard deviation squared (denoted by σ2

AL):

γχ2 =
s̄2

σ2
AL

(3)

If the observed variance (the empirical variance) can be
explained solely by the expected variance (which is a
function of object brightness), no trend is observed. Con-
versely, the case of the observed variance exceeding the
expected variance can be explained by a trend in the se-
ries of measurements. Under the null hypothesis, i.e.,
when the observed variance is fully explained by the ex-
pected variance, σ2

AL, it holds that

(n− 1)γχ2 =
(n− 1)s̄2

σ2
AL

=
n− 1

σ2
AL

n
∑

i=1

(xi − x̄)2 (4)

is distributed according to a χ2(n− 1) law. Thus, testing
for a trend is done by performing a one-sided test of the
above statistic against a χ2(n− 1) distribution.

2.4. Tests Based on Regression/Data Fitting

This method is based on performing a best fit of the ob-
served data onto a straight line, and subsequently testing
the significance of the linear coefficient. This of course
assumes that the alternative to the null hypothesis (‘no
motion’) is a linear motion, and not, e.g., a quadratic mo-
tion.

The linear coefficient is estimated as follows:

best =

∑n

i=1(yi − ȳ)(xi − x̄)
∑n

i=1(xi − x̄)2
(5)

Using this, the test statistic may be written as

γR =
best

√
∑

n

i=1
(xi−x̄)2−b2

est

∑

n

i=1
(ti−t̄)2

(n−2)
∑

n

i=1
(ti−t̄)2

(6)

Under the null hypothesis, γR can be shown to be dis-
tributed according to a Student’s t-distribution with n− 2
degrees of freedom.

We assume the measurements can be described by a
straight line, i.e., that the velocity vector of the observed
object is constant during the field transit (which lasts less
than one minute). Making this assumption, the null hy-
pothesis, i.e., the case of a zero slope, is tested for by
performing a two-sided test in a t(n− 2) distribution.

3. ERRORS IN THE VELOCITY ESTIMATION

An estimate of the object’s instantaneous velocity in the
along-scan direction is derived as a step inherent in the
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regression-based approach, i.e. the computation of the
linear coefficient estimate best in Equation 5. Therefore,
it is only natural to explore the quality of best as a veloc-
ity estimator. Deviating slightly from motion detection as
such, the rest of this paper deals with the velocity estima-
tion arising naturally from the regression-based motion
detection method earlier.

Simulating Gaia’s observations of Main Belt asteroids
and a simulated population of NEOs for the full mission
duration and estimating the along-scan velocity for each
field crossing, we compare the velocity estimate with
the actual (simulated) object velocity and plot the corre-
sponding velocity estimate errors as a function of actual
velocity. This can be seen in Figures 3 and 4.
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Figure 3. Errors in NEO velocity estimation, based on
simulated observations.
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Figure 4. Errors in velocity estimation for the first 2000
Main Belt asteroids.

The accuracy of the velocity estimate from one field
crossing (the RMS of the errors) of the simulated NEO
population and that of the first 2000 Main Belt asteroids
are:

σ
V,NEO = 0.6 mas s−1

σ
V,MB = 0.08 mas s−1

This predicts that the velocity of about 95% of the NEOs
and Main Belt asteroids can be determined with an ab-

solute error of less than 1.2 mas s−1 and 0.16 mas s−1,
respectively, based on measurements from a single astro-
metric field crossing.

Furthermore, these simulations indicate that the relative
error on the velocity estimation based on a single cross-
ing is less than 10% for about 80% of the simulated NEO
population. For 95% of this population, the relative error
on the velocity is less than 30%. As to the velocity er-
ror of the 2000 Main Belt asteroids, 95% of these have a
relative error better than 10%, and 80% better than 2.5%.

4. SUMMARY

Four different motion detection methods, based on sta-
tistical testing and regression, were employed and sub-
sequently compared in their abilities to detect motion in
noisy data arising from a single astrometric field crossing.
The relative performance of each of the four methods var-
ied depending on the number of measurements (the num-
ber of CCDs in which the object was observed).

When accepting that 8.3% of the stationary objects are
erroneously characterized as moving, based on five mea-
surements, the best method correctly characterizes an ob-
ject as moving in 95% of the cases when the actual veloc-
ity of the object is greater than one third of the measure-
ment error.

For twelve measurements (ASM, and AF1-AF11), ac-
cepting 4.5% erroneous characterizations of stationary
objects, the similar 95% level velocity threshold is at
slightly less than one tenth of the measurement error.

Working on a simulated population of NEOs and on the
first 2000 Main Belt asteroids, respectively, an investiga-
tion of the error in the velocity estimation, derived from
fitting measurements from one astrometric field crossing
onto a straight line, shows that the standard deviation is
σV,NEO = 0.6 mas s−1 and σV,MB = 0.08 mas s−1, re-
spectively.
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