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A PROTOTYPE FOR SCIENCE ALERTS
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ABSTRACT

The alerting on rare and unusual events is the scientific
equivalent of the finding of needles in haystacks or the
panning for gold-dust in rivers. In modern signal process-
ing, novelty detection is routinely performed with self-
organising maps (SOMs). Here, we describe their appli-
cation to the classification of data provided by large-scale
surveys and to the despatching of scientific alerts for the
Gaia mission.
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1. INTRODUCTION

The aim is to alert on the most interesting classes of vari-
able objects so that follow-ups using ground-based tele-
scopes can begin. This includes supernovae, microlens-
ing events, near-Earth asteroids, novae, stars undergoing
rare and interesting phases of evolution (such as helium
flash), and so on (see Belokurov & Evans 2002, 2003).
Every class of object will require an individual trigger.

In the signal processing literature, the technique of self-
organising maps (SOMs) is often used as a mecha-
nism for novelty detection (e.g., Markou & Singh 2003).
SOMs are an unsupervised learning or clustering algo-
rithm invented by Kohonen in 1982. They have already
found a number of applications in astronomy – although
for classification rather than novelty detection purposes
(see Belokurov, Evans & Feeney 2004).

2. IDEOLOGY

SOMs are two-dimensional lattices of nodes. Roughly
speaking, the number of nodes of the SOM is the number
of distinct classes. This is always much smaller than the
number of different examples in the data set. The train-
ing algorithm ensures that the nodes represent the most
abundant classes in the data set. If a pattern is rare, then
necessarily there will be no node allocated near to it.

As a test data set, let us use lightcurves from the OGLE-
II (Optical Gravitational Lensing Experiment). These are

I band lightcurves of 2.2 × 105 variable objects taken
towards the Galactic bulge (Woźniak et al. 2002). Each
lightcurve is replaced by a vector x in a large (but finite)
dimensional vector space, called the pattern space.

We choose to construct the SOMs with high-quality
lightcurves. So, the first job is to select these. This is
done by allocating a rough measure of signal-to-noise ra-
tio (S/N) to each lightcurve. The three maximum flux val-
ues and three minimum flux values are used to construct
9 flux differences. In each case, the noise is computed
by adding the flux errors of the individual measurements
in quadrature. This gives 9 estimates of S/N, of which
the minimum is selected to guard against outliers. Only
lightcurves with S/N exceeding 4 and valid V − I colour
are selected to give 1.3 × 105 in total. Each of these is
analysed with a Lomb-Scargle periodogram. The power
spectra are binned in the following way. First, we identify
6 ranges of interest (corresponding to the period intervals
defined by the endpoints 0.1, 1.1, 3, 9, 30, 100, 1000 in
days). Each range is split into 10 equally-spaced bins in
the frequency domain. The maximum value of the power
spectrum in each bin is found. This gives a crude enve-
lope for the shape of the power spectrum, which is now
scaled so that its maximum value is unity. This associates
each lightcurve with a 60-dimensional vector. To this, 5
further pieces of information are added. The first is a
magnitude difference. From the distribution of flux mea-
surements, the 2nd and 98th percentiles are found and
converted to a flux difference in magnitudes using the
zeropoint of the difference image (DIA) analysis. The
second is the flux difference between the 98th percentile
and the 50th (the median). This is normalised by the flux
difference between the 98th and 2nd percentiles to give
a number between zero and unity. This gives us a way
of distinguishing between dips and bumps, and is called
the ‘bump statistic’. The third is the V − I colour, while
the fourth is the robust kurtosis measure, as defined by
Stetson (1996). The fifth and final input is the difference
between the χ2 of a constant baseline fit and of a linear
fit to the lightcurve, normalised to unity. So, this input is
distributed between 0 (lightcurves with no apparent gra-
dient) and 1 (linear gradient). Each lightcurve has now
been replaced by a 65 dimensional vector in the pattern
space.

The standard algorithm for creating a SOM has four
steps, namely (e.g., Haykin 1994):
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Figure 1. A SOM constructed with ∼ 105 OGLE lightcurves. The key for the colour of the nodes is given in the upper left
panel (yellow denoting close and black distant nodes).

Figure 2. The same SOM is shown as in Figure 1, but each node is now colour-coded according to the number of hits.
The key is given in the upper left panel (blue denoting populous and red/black sparsely-populated nodes).
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Figure 3. The nodes of the SOM are coloured according to distance (as in Figure 1) and the key is given in the upper
left panel. Contours of the bump statistic are plotted on the map. The key for the colour of the contour is given in the
upper middle panel (blue denoting a dip and yellow a high peak). The nodes onto which the known eclipsing binaries are
mapped are marked with a number. This is the percentile of the node quantization error distribution corresponding to the
median error. The key for the colour of the number is given in the upper right panel (black denoting few and white many
eclipsing binaries).

[1] Values for the initial weight vectors wj(0) at each
node of the map are picked, It is simplest of all to pick
these starting conditions randomly.

[2] A pattern x is chosen from the data set.

[3] The winning node i(x) at each iteration n is chosen
using a minimum Euclidean distance criterion

i(x) = j, corresponding to min ||x(n)−wj || (1)

[4] The weights of all the nearby nodes are updated

wj(n+1) = wj(n) + η(n)[x(n)−wj(n)], j ∈ Λ(n)
(2)

where η(n) is the learning rate and Λ(n) is the neigh-
bourhood function, which shrinks with iteration number
n. Now return to [2] and perform for the next pattern in
the data set. Once the whole data set has been processed,
do it again 105 times.

Pictorially, we may imagine a lattice connected with
springs. The springs may be stretched or compressed,
but the linkages may not be broken. The algorithm at-
tempts to match the nodes of the lattice with the centres
of clustering of the data set in a higher dimensional pat-
tern space.

Each of our maps has 50 × 30 nodes, which gives a
useful trade-off between resolution and speed. For the

first phase, the initial size of the neighbourhood corre-
sponds to the size of the map. The number of iterations
is 1.5 × 106 and the learning rate is 10 per cent. The first
phase establishes the large-scale ordering map. For the
second phase, the initial size of the neighbourhood is 3,
the number of iteration is 1.5 × 107 and the learning rate
is 5 per cent. The second-phase fine-tunes the ordering
on the map.

3. CARTOGRAPHY

A SOM constructed using 1.3 × 105 lightcurves from
the OGLE data set is shown in Figure 1. The 50 × 30
nodes of the lattice are the cluster centres. The ordering
is topological – like maps of the Paris metro network –
and so the distance separating nearby nodes is not faith-
ful. Rather, the distance is indicated by the colour coding
on the upper-left panel. Neighbouring nodes that are truly
close together are coloured yellow, while those truly far
apart are coloured green or black. So, a grouping of yel-
low nodes on the map implies a tight clustering of nodes
in the pattern space. Each pattern is mapped onto a node
associated with the nearest weight vector (that is, the one
with the smallest Euclidean distance from the pattern).
This distance is referred to as quantization error. An al-
ternative way of viewing the same map is shown in Fig-
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Figure 4. The nodes of the SOM are coloured according to distance (as in Figure 1) and the key is given in the upper
left panel. Contours of the bump statistic are plotted on the map. The nodes onto which known cataclysmic variables are
mapped are marked with a number, using the same convention as in Figure 3.

ure 2, in which the nodes are colour-coded according to
the number of hits (or mapped lightcurves). Blue denotes
a node onto which many lightcurves are mapped and so
is a clustering centre. Black denotes empty and dark-red
very sparsely sampled nodes.

Figure 3 shows the same SOM with again the nodes
colour-coded according to distance (as in Figure 1).
Overplotted are contours of the bump statistic, with blue
denoting a dip and yellow a bump. Also shown on the
SOM are the locations of 2580 known eclipsing binaries
found by Wyrzykowski et al. (2003) in OGLE data to-
wards the Large Magellanic Cloud (and so distinct from
the data set towards the bulge). If an eclipsing binary
is mapped to a node, then the node carries a number.
Shades of grey correspond to the number of eclipsing
binaries (white being many and black being few). The
number on the node is the percentile (from 1 to 100)
of the node quantization error distribution correspond-
ing to the median error of the eclipsing binaries. In
other words, a ‘50’ or smaller number means the eclips-
ing binary lightcurve looks very similar to the majority
of the lightcurves mapped onto a node, while a ‘100’
means it looks rather different. So, for example, large
numbers of the LMC eclipsing binaries lightcurves are
concentrated on nodes with map coordinates (13,10) or
(14,9) or (16,12). Returning to the bulge data set, sam-
ple lightcurves mapped onto (14,9) are shown in Figure 7
– as expected, they are all eclipsing binaries with com-
parable lightcurve shapes. Reassuringly, they coincide
closely with the blue contours of small bump statistic.

The SOM has successfully clustered similar lightcurves
and mapped them onto a node.

Figure 4 shows the same underlying SOM with con-
tours of the bump statistic overplotted. Suppose we wish
to identify the nodes corresponding to the classical and
dwarf novae. Strongly peaked lightcurves have large val-
ues of the bump statistic and so are enclosed by yellow
contours. There are 32 eruptive cataclysmic variables
identified toward the Galactic Bulge by Cieslinki et al.
(2003). As expected, they are indeed mapped to the nodes
enclosed by the yellow contours.

Figure 5 shows the same underlying SOM with contours
of the amplitude overplotted. Suppose we wish to iden-
tify the nodes corresponding to the 8970 OGLE small-
amplitude red giant (OSARG) variables in the Galactic
bar identified by Wray, Eyer & Paczyński (2004). The
authors outline two main classes of OSARG variables
(type A and B) according to their amplitude and colour.
Then, as the blue contours in Figure 5 enclose the nodes
on which the small amplitude variables are mapped, this
is the place where the OSARGs of type A are expected.
Figure 6 shows the locations of the known OSARG vari-
ables of type B. They occupy the region located next to
the cloud of type A members but prefer the nodes with
larger amplitude. Again, the SOM has recognised similar
patterns and successfully clustered them.

As far as the variable star classification is concerned, the
visualization is an important, albeit intermediate step, in
the data processing. The final goal is to assign variabil-
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Figure 5. The nodes of the SOM are coloured according to distance (as in Figure 1) and the key is given in the upper
left panel. Contours of the amplitude are plotted on the map. The key for the colour of the contour is given in the upper
middle panel (blue denoting low amplitude and yellow high). The nodes onto which the known small-amplitude red giant
variable stars of type A are mapped are marked with a number, using the same convention as in Figure 3

Figure 6. The nodes onto which the known small-amplitude red giant variable stars of type B are mapped are marked
with a number. The convention for the colours of the numbers is given by the key in the upper right panel.
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Figure 7. Sample lightcurves mapped onto the node (14,
9). They are almost all eclipsing binaries.

ity class membership. To enable quantitative compari-
son, we develop the idea of tree diagrams, as shown in
Figure 8. We start with each node representing a class.
Then the nodes are clustered by regarding as identical
nodes within a given distance threshold. As the dis-
tance threshold increases, clusters come together to form
super-clusters, and so on. At each distance threshold, the
tree diagram shows the branching and hence the number
of distinct data clusters. In Figure 8, the branches are
colour-coded according to the number of objects, with
white representing most abundant and black least. The
best choice of distance threshold to identify a class is
given by selecting long branches with constant colour.
In Figure 9, we show a tree diagram restricted to the
nodes identified with (LMC) eclipsing binaries. We see
two major classes that are easily identifiable from their
white/yellow colour, together with a number of well-
defined minor classes.

So, SOMs carry out clustering very quickly. The SOM
has enabled us to identify new candidates for classical
and dwarf novae, eclipsing binaries and small-amplitude
red giant variables in the OGLE-II data set with very little
work. In general, very large data sets can be processed
extremely rapidly with SOMs and the broad features of
the data readily extracted. As we have illustrated here,
their ideal role is to conduct a “quick look” through the
data set, identifying the most prominent features.

4. ALERTS

How do SOMs single out rare patterns for future study
and follow-up work? How can they perform alerts?
Events that are rare may be scattered over the SOM, as
they may not be common enough to warrant allocation
of a node. However, they are recognisable through their
large quantization error. They are different from the most
common patterns mapped to the nodes.

An unusual pattern (such as a microlensing or a
supernova-like lightcurve) has an additional property.
Not merely is it distant from the node onto which it is
mapped, it is also distant from all nodes. For each data
pattern, suppose the 10 closest nodes are found and sorted
in the order of increasing distance. Than a linear fit of the
distance (scaled by the smallest one) versus node number
is produced. Let us call the slope the ‘pattern rate’. A
rare pattern is well away from all the nodes of the lattice
and so the slope is very small.

Graphs of quantization error versus pattern rate and quan-
tization error versus signal-to-noise ratio are shown in
Figure 10. Suppose the threshold is placed at a quan-
tization error of 2 (this is the approximate value of the
quantization error where the rate changes slope). Sup-
pose also the threshold is placed at S/N > 10. The
combined cuts reduce the data set to about one per cent
of the total. These are the most discrepant lightcurves
with highest signal-to-noise ratio. These are exactly the
lightcurves from which we wish the alerts to come. As
an example of this, we show overplotted on Figure 10 red
triangles which correspond to the locations of the known
dwarf and classical novae. (These are a proxy for super-
novae lightcurves).

Of course, further experimentation is needed to decide
whether such cuts are enough on their own to issue alerts,
or whether such cuts provide a drastic reduction in the
data but further, more sophisticated processing is re-
quired. Even if the latter turns out to be true, the SOM
has played a crucial role in eliminating almost all the
common patterns, allowing us to concentrate on the dis-
crepant few.

What needs to change for application to the Gaia data set?

First, the input vector needs to be constructed from the
Gaia photometry/spectroscopy/astrometry and may be
different for different objects (SN/microlensing). Experi-
mentation with different pattern spaces is needed to iden-
tify the most telling combination of observables for di-
agnostic purposes. Second, the lightcurves in our exper-
iments have substantial gaps (6 month periods) but com-
prise ∼ 3 years data. At the beginning of the Gaia mis-
sion, the timeseries is short. As the Gaia great circle tran-
sits occur, a longer timeseries becomes available. So, ob-
jects follow tracks in the SOM, settling down to a stable
winning node after a number of transits. The settling-
down time is between 6 months and a year.

In other words, a prototype of the Gaia alert system might
be as follows:

[1] Every 6 hours, a SOM is built from the Gaia data
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Figure 8. A tree showing the main strands of clustering in the SOM. Plotted vertically is the distance threshold required
for identification as member of a cluster. The horizontal scale is arbitrary. The colour codes represent the logarithm of
the number of lightcurves in each branch.

Figure 9. A tree restricted to the nodes corresponding to eclipsing binaries.

stream. The discrepant patterns are extracted with cuts
on signal-to-noise and quantization error. Also extracted
are the common patterns corresponding to known types

of variable stars.

[2] The discrepant patterns are cross-checked against a
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Figure 10. Left: Lightcurves plotted in the space of pattern rate versus quantization error. Note the change of slope at a
quantization error of ∼ 2. This marks the threshold error for novelty detection. Right: Lightcurves plotted in the space of
signal-to-noise ratio (S/N) versus quantization error. The conditions S/N > 10 and quantization error > 2 carries out
novelty detection. The known novae are marked with red triangles. (For reasons of clarity, only a tenth of the data set is
plotted).

catalogue of known stellar variables. Some of the stellar
variables can be pre-loaded from existing surveys of vari-
able stars (such as those available from the microlensing
surveys). This catalogue however will be incomplete at
the beginning of the mission and so will need to be up-
dated every 6 hours with new variables identified by the
SOM.

[3] If the discrepant patterns are not in the catalogue of
variable stars, then they are candidates for alerts and need
to be looked at very closely. It may be that there is al-
ready enough confidence that the object needs ground-
based follow-up to issue an alert. It may be that further
tests are needed for specific classes of object.

5. CONCLUSIONS

SOMS are a powerful way to take a quick-look at the
data. They provide a broad brush clustering of the main
types of pattern very quickly. They are ideal for Petabyte
data sets (like Gaia). This is because they are fast, unsu-
pervised and make no prior assumptions about the data.

SOMS are a powerful way of implementing novelty de-
tection. The number of nodes is roughly the number of
distinct classes and is always much smaller than the num-
ber of different patterns. The nodes represent the most
abundant patterns. If a pattern is rare, then necessar-
ily there will be no node allocated near to it. So, such
patterns are identifiable through their large ‘quantization
error’. Cuts on the quantization error and the signal-to-
noise ratio can substantially reduce the amount of data.

This may already be enough to identify the high-quality
discrepant patterns on which we wish to alert.
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