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GAIA OPTICAL ABERRATIONS DESCRIBED BY MEANS OF ORTHOGONAL POLYNOMIALS
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ABSTRACT

We present a method to describe the wavefront aber-
ration distribution generated by a rectangular aperture
with polynomial representations different from the usual
Zernike one. While Zernike polynomials can still be used
for wavefront decomposition over pupil shapes other than
circular, in this case they form a basis that is no longer or-
thogonal. We compare the Zernike description with two
new bases that are orthogonal over rectangular apertures,
obtained with different approaches: the Gram-Schmidt
orthogonalisation and the extension at two dimensions of
the Legendre polynomials.
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1. INTRODUCTION

Gaia is the next generation global astrometric space
mission. It will operate in continuous scanning mode to
cover the full sky and to get a global reconstruction of
the celestial sphere. General descriptions of the mission
profile, hardware implementation and measurement prin-
ciples can be found in other contribution to this meeting,
(Perryman 2005; Mignard 2005; Pace 2005; Lindegren
2005). The current accepted configuration of the optical
system, called Baseline Configuration, consists of two
monolithic telescopes mounted on a common bench,
each one looking at a different line of sight. Higher
resolution is required along the scanning direction. The
geometry of the aperture, for allocation purposes, is
rectangular with the larger dimension (higher resolution)
aligned with the scan direction. This layout gives an
output wavefront that can still be described with the
Zernike polynomials, but this choice is not optimal
because they form a basis that is no longer orthogonal
over such an aperture. In this paper, we compare the
description of Gaia optical aberrations made with the use
of three different sets of polynomials: standard circular
Zernike polynomials, a set of polynomials obtained
by Gram-Schmidt orthogonalisation over a rectangular
pupil and a set derived from the classical Legendre
polynomials.

2. GENERAL FRAMEWORK

To describe a wavefront using a complete set of functions
Qn, the criterion for the base selection imposes some
constraints on the functions properties. One fundamental
parameter is the root mean square (rms) of the wavefront,
defined as:

rms =
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where A is the pupil area.

If the set Qn is an orthogonal basis and Q1 = 1, we have
a simple formulation for the rms:
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The Zernike polynomials Zi form a complete orthogonal
set over a circular pupil C, and Z1 = 1. Therefore we
can write

W (ρ, θ) =
∑

n

cnZn(ρ, θ)

rms2 =
∑

n>1

c2

n‖Zn‖
2 (3)

C = {(ρ, θ) ⇒ 0 ≤ ρ ≤ 1, 0 ≤ θ ≤ 2π}

Each polynomial Zi can be associated to a classical aber-
ration, so it is easy to identify the contribution ci of each
term to the aberration function W . The piston corre-
sponds to the Z1 polynomial. On a rectangular pupil

R = {(x, y) ⇒ −a ≤ x ≤ a,−b ≤ y ≤ b, a2 + b2 ≤ 1}

obtained by apodisation of the original circular pupil
(see Figure 1), the Zernike polynomials still describe the
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Figure 1. Pupil apodisation.

wavefront W , but they are no longer orthogonal. New
sets of orthonormal functions can be derived from the
Zernike description or built directly from 1-dimensional
(1-D) polynomials (Courant & Hilbert 1953), as detailed
here after, in order to satisfy Equation2.

Let Pi be an orthogonal basis over R, then

W =
∑

i

ciZi =
∑

j

qjPj (4)

or in matrix notation

W ≈ cT Z = qT P (5)

where, for practical reasons, the sum is made up to a finite
number of polynomials N . The Pj basis can be expressed
as well in terms of Zernike polynomials as

Z = BP (6)

Introducing the matrix S, whose elements are given by
the scalar product of the Zernike polynomials over the
apodised pupil

Snm =

∫

R

ZnZmdxdy, (7)

the B matrix is given by the equation

S = BDBT (8)

where D is the diagonal matrix defined by the normali-
sation condition of the Pj set. The coefficients qj of the
new wavefront decomposition satisfy the equation

qT = cT B (9)

3. GRAM-SCHMIDT

A solution of the equation S = BDBT can be found by
Gram-Schmidt orthonormalisation with D = I . Switch-
ing back to index notation, the B matrix can be built nu-
merically by recursive application starting from the first

diagonal element B11. The elements of the S matrix are
obtained from

Snm =

∫ a

−a

∫ b

−b

Zn(x, y)Zm(x, y)dxdy (10)

Figure 2 shows the wavefront maps corresponding to
each single term of the sum W =

∑

j qgs
j P gs

j with
qgs
j = 1 for j = 2, .., 21.
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Figure 2. Wavefront maps for the Gram-Schmidt Polyno-
mials P gs

j , j = 2, .., 21. j = 1 (piston) is not shown.

4. 2-D LEGENDRE

A set of orthogonal polynomials can also be defined with-
out the need for explicit calculation of the matrix S, as a
linear combination of the classical 1-D Legendre polyno-
mials:

Lij(x, y) = Li(x/a)Lj(y/b) (11)

This set forms an orthogonal basis over the rectangular
pupil, with norm

‖Lij‖
2 =

4ab

(2i + 1)(2j + 1)
(12)

In this case the matrix B can be obtained by direct analyt-
ical calculation. B is the product of two matrices defining
the relationship between the Zernike, the Binomial and
the 2-D Legendre bases. For a Zernike representation in
polar vs. cartesian coordinates see for example Malacara
(1978). As in the previous paragraph, Figure 3 shows the
wavefront maps corresponding to each single term of the
sum W =

∑

ij qL
ijLij with qL

ij = 1 for i > 0, j > 0.
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Figure 3. Wavefront maps for the 2D-Legendre Polyno-
mials Lij , i > 0, j > 0. i = j = 0 (piston) is not shown.
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5. RESULTS

As an application of the previous concepts, we performed
numerical calculations assuming a rectangular pupil R
with apodisation parameters a = 0.2 and b = 0.56. This
corresponds, for the Gaia case, to rectangular aperture
sizes of 500 mm and 1400 mm respectively, scaled to an
overall circular pupil C of diameter 2ρ = 2500 mm, that
is used for computations with the Zernike polynomials.

We consider three different wavefronts W :

• Case A: the wavefront WA is built with all the
Zernike coefficients taken equal;

• Case B: WB is a realistic case of a singlet, the object
being an on-axis point in the field of view;

• Case C: same optical design as case B, the object
being an off-axis point in the field of view with angle
coordinates 0.2◦ in the x direction and 0.3◦ in the y
direction.

The values of the Zernike coefficients ci for the three
cases considered are shown in Table 1. Units for the co-
efficients (column three to five) are waves. The last two
rows summarise the rms of the polynomials, calculated
using Equation 3, and the ‘real’ wavefront rms, obtained
by direct numerical evaluation. The value calculated us-
ing Equation 3 gives the wavefront rms as if evaluated
over the original circular pupil rather than over the rect-
angular one. The discrepancy is big and dependent from
the case considered. Such an effect has been emphasised
on purpose by the choice of a circular pupil quite larger
than the encircled rectangular one.

Table 2 and Table 3 show the expansion coefficients of the
same wavefronts obtained using Equation 9, respectively
for the 2-D Legendre and the Gram-Schmidt polynomi-
als, and the rms calculated using Equation 2 compared
again with the wavefront rms obtained by independent
calculation. As it can be seen, the values are quite in
good agreement, as expected.

It is also interesting to see how the total aberration of the
wavefront is distributed over the single terms. This is
shown in Figures 4, 5 and 6 respectively for the three
considered cases. Each plot compares the Gram-Schmidt
representation (diamonds) with the 2-D Legendre one
(triangles).

In general the values cannot be compared one-by-one,
because the individual polynomial of one basis can not
be directly associated to the polynomial with the same
identifier of the other basis. This is not true for the first
three polynomials, that are in fact the same for both bases.
Going to higher orders, the one-to-one correlation fails.
Nevertheless, there is still a common feature, i.e., the rms
evaluated using the coefficients of the polynomials up to
a certain order (in other words the two different represen-
tations cannot transfer aberration weight from one order
to another). This value, compared with the ‘real’ wave-
front rms, also gives an estimate of how good the polyno-
mial fit is. In the three considered cases, 21 polynomials

Table 1. Value of the Zernike coefficient ci for the three
considered cases (see text).

Order i WA WB WC

0 1 0.1 0.9638 1.0534
1 2 0.1 0.0000 −0.7533

3 0.1 0.0000 −1.1300
2 4 0.1 0.0000 −0.0689

5 0.1 1.4455 1.5351
6 0.1 0.0000 0.1655

3 7 0.1 0.0000 0.0000
8 0.1 0.0000 −0.3765
9 0.1 0.0000 −0.5648

10 0.1 0.0000 0.0000
4 11 0.1 0.0000 0.0000

12 0.1 0.0000 0.0000
13 0.1 0.4817 0.4816
14 0.1 0.0000 −0.0001
15 0.1 0.0000 0.0000

5 16 0.1 0.0000 0.0000
17 0.1 0.0000 0.0000
18 0.1 0.0000 0.0001
19 0.1 0.0000 0.0002
20 0.1 0.0000 0.0000
21 0.1 0.0000 0.0000

rms of poly 0.1663 0.8619 1.1645
wavefront rms 0.0415 0.0843 0.1628

Table 2. Value of the 2-D Legendre coefficient qL
ij for the

three considered cases (see text).

Order (i, j) WA WB WC

0 (0;0) 0.0782 0.0659 0.0933
1 (1;0) 0.0345 0.0000 −0.0291

(0;1) 0.0529 0.0000 −0.1913
2 (2;0) −0.0133 0.0188 0.0217

(1;1) −0.0331 0.0000 0.0371
(0;2) −0.0233 0.1787 0.2307

3 (3;0) −0.0036 0.0000 −0.0036
(2;1) −0.0197 0.0000 −0.0253
(1;2) 0.0000 0.0000 −0.0473
(0;3) −0.0256 0.0000 −0.1191

4 (4;0) 0.0004 0.0011 0.0011
(3;1) 0.0022 0.0000 0.0000
(2;2) 0.0034 0.0322 0.0322
(1;3) 0.0056 0.0000 0.0000
(0;4) 0.0067 0.0650 0.0650

5 (5;0) 0.0001 0.0000 0.0000
(4;1) 0.0006 0.0000 0.0000
(3;2) 0.0000 0.0000 0.0000
(2;3) 0.0038 0.0000 0.0000
(1;4) 0.0000 0.0000 0.0000
(0;5) 0.0042 0.0000 0.0000

rms of poly 0.0415 0.0835 0.1616
wavefront rms 0.0415 0.0843 0.1628

give a good approximation of the wavefront, but for more
complicated optical designs (as Gaia is) they may not be
sufficient.
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Figure 4. Wavefront WA: comparison of the normalised
magnitude of each polynomials coefficient for 2-D Leg-
endre (triangles) and Gram-Schmidt (diamonds).

Figure 5. Wavefront WB: comparison of the normalised
magnitude of each polynomials coefficient for 2-D Leg-
endre (triangles) and Gram-Schmidt (diamonds).

Figure 6. Wavefront WC: comparison of the normalised
magnitude of each polynomials coefficient for 2-D Leg-
endre (triangles) and Gram-Schmidt (diamonds).

Table 3. Value of the Gram-Schmidt coefficient qgs
j for the

three considered cases (see text).

Order j WA WB WC

0 1 0.0523 0.0441 0.0624
1 2 0.0133 0.0000 −0.0112

3 0.0204 0.0000 −0.0739
2 4 0.0064 −0.0524 −0.0677

5 −0.0048 0.0123 0.0152
6 −0.0074 0.0000 0.0083

3 7 −0.0000 0.0000 0.0081
8 −0.0009 0.0000 −0.0012
9 −0.0069 0.0000 −0.0305

10 −0.0025 0.0000 0.0000
4 11 0.0008 0.0080 0.0080

12 −0.0014 −0.0129 −0.0129
13 0.0003 0.0013 0.0013
14 0.0009 0.0000 −0.0000
15 0.0002 0.0000 0.0000

5 16 0.0000 0.0000 0.0000
17 0.0001 0.0000 −0.0000
18 0.0001 0.0000 0.0000
19 0.0010 0.0000 0.0000
20 0.0004 0.0000 0.0000
21 0.0002 0.0000 0.0000

rms of poly 0.0415 0.0835 0.1616
wavefront rms 0.0415 0.0843 0.1628

CONCLUSIONS

We present a general method to describe the wavefront
aberration distribution over a rectangular aperture, which
is the case of Gaia, by means of orthogonal polynomi-
als. The main advantage of such a representation is that
the wavefront error can be easily derived from the coef-
ficients of the series expansion. We discuss a method to
obtain two new bases that are orthogonal over rectangular
apertures: one derived from the classical 1-dimensional
Legendre polynomials, and another from Gram-Schmidt
orthogonalisation. As a practical application, we com-
pare the outputs of the new wavefront descriptions with
those of the standard Zernike decomposition, in three dif-
ferent cases.

We have now a very useful tool for description of opti-
cal aberrations over rectangular shaped apertures. This is
crucial to have the correct optical analysis for the Gaia
Baseline Configuration telescopes.
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