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ABSTRACT

We have simulated Gaia medium band photometry in the
1X system for (synthetic) binaries and single stars for
G =15 to 20 mag end-of-mission as well as single shot
photometry. Each binary is a system of five independent
physical parameters (the components’ masses M7, Mo,
age, metallicity and extinction), which translates into six
parameters needed to define the binary’s spectrum (Zeg,
Tes,, log g1, log g2, [Fe/H], Ay). To see how the under-
lying grid of parameters influences the classification, we
simulated two sets of binary/single stars. Using an auto-
mated classification algorithm known as Support Vector
Machine, we show that the capability of correctly identi-
fying binaries is a strong function of the signal to noise
ratio and the luminosity ratio of the two components.
The maximum of correctly identified binaries is reached
at logarithmic luminosity ratios of log(L,.) in the range
[0.5;1.0]. For these ratios, correct classification rates bet-
ter than 70% at G = 15 and 16 mag are possible. The dif-
ferential analysis for the two different parameter distribu-
tions further shows that the underlying grid also strongly
influences the classification results.
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1. SIMULATIONS

The masses of the two binary components are randomly
drawn from a mass generating function (with M, < M)
based on an IMF as given in Kroupa et al. (1991) and
Kroupa (2001). Binaries which are calculated based on
this IMF approach are referred to as set A. To allow for
a test of how the distribution of stellar parameters affects
the classification performance, we simulated a second set
where masses are drawn from a uniform distribution (al-
ways M, < M;j). This is referred to as set B. Since
the simulations naturally yield more main-sequence (MS)
stars for the two binary components, we artificially in-
creased the number of RG-MS or RG-RG (RG = Red
Giant) combinations. The distinction of the two compo-
nents in a binary is here done by mass: The ‘primary’
component has a higher mass than the ‘secondary’ com-
ponent.
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Figure 1. The distributions of the binary stellar param-
eters for the complete set A (left column, based on an
IMF) and set B (right column, based on a uniform mass
distribution). Both sets include an excess of 5000 main-
sequence / red giant star combinations. From top to bot-
tom are shown the distributions of the masses (in units
of solar mass), temperatures 7o, , Test,, gravities log g1,

log g2 and logarithmic luminosity ratio log(L,.) = LL‘—“
For the masses, temperatures and gravities, the first com-
ponent’s parameters are given by the solid, white his-
tograms, while those of the second component are repre-
sented by shaded histograms. The distributions of [Fe/H]
and Ay, are essentially uniform and not shown. The cor-
responding histograms for the simulated single stars are
similar to those of the binary’s first component.
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Table 1. The ranges of the astrophysical parameters. The
maximum allowed age for a star or binary system was
chosen to be 13.6 Gyr (Spergel 2003). The mass and
metallicity ranges for the two binary components are both
defined by the evolutionary tracks which are used to cal-
culate the corresponding T.g and log g values.

parameter range
mass [0.4;5] Mg
age 10 ; 13.6] Gyr
[Fe/H] [—3.6; 0.6] dex
Ay [0; 5] mag
Teg [2500 ; 24 000] K
log g [1; 5] dex

With a randomly chosen metallicity and age value we in-
terpolated in a grid of evolutionary tracks taken from Yi
et al. (2003) to find T, and log g for each component.
With these and a randomly chosen extinction value (us-
ing an extinction curve from Fitzpatrick 1999), we inter-
polated in the Basel2.2 grid (Lejeune 1997) of synthetic
spectra to find the corresponding stellar energy distribu-
tions which are then added up. The spectra of single stars
were simulated correspondingly.

To calculate Gaia medium band fluxes in the 1X system
(Vansevicius 2002), we used the photometry simulator by
Bailer-Jones (Bailer-Jones 2002, version 2) for magni-
tudes of G = 15 to 20 mag for two cases: single shot (SS),
i.e., only one simulated observation and end of mission
(EM) photometry. There are 6000 objects (3000 of each
class: binary/single star) for training and 24 000 objects
(12000 of each class) for validation purposes for each set
and magnitude case. The distributions of the major pa-
rameters are summarized in Figure 1 and Table 1.

2. SUPPORT VECTOR MACHINES

For the classification (binary/single star) we used an algo-
rithm which is known as Support Vector Machine (SVM,
Vapnik 1995).

A SVM separates classes (binary/ single star) by find-
ing an optimal hyperplane which divides the training
data by a maximal margin. In general, the SVM per-
forms an implicit mapping of the training data into a
high-dimensional feature space where a linear separation
should be possible. The problem can then be solved since
a linear separating hyperplane in a high-dimensional fea-
ture space results in a nonlinear separating hypersurface
in the original input space. The solution is found in
a quadratic optimization problem with inequality con-
straints which can be solved by a Lagrange function with
well defined properties.

The application of SVMs requires adjusting of two con-
trolling parameters which define the generalization per-
formance. We evaluated the optimum values by five-fold
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Figure 2. The conditional probability P(binary|BINARY),
i.e., the rate at which a true binary is classified as a bi-
nary as a function of logarithmic luminosity ratio log(L..)
for different end-of-mission magnitudes. Each data point
is the average over a range of logarithmic luminosity ra-
tios and is plotted at the midpoint of that specific range.
For example, the points at log(L,) = 0.25 are for 0.0
< log(L,) < 0.5. The last interval covers the range
2.5 < log(L,) < 3.5. The lower plot shows the cor-
responding probability P(star|BINARY), i.e. the rate at
which a binary is falsely classified as a star (100 —
P(binary|BINARY)). The number of points averaged in
each luminosity range can vary by factors of 2.5 but are
always larger than 1000. Note that a classification rate
of 50% corresponds to that of a random classifier.
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Figure 3. The same as in Figure 2 but for single shot (SS)
photometry.

cross validation on the training set. For the present simu-
lations we used the latest version of the R software pack-
age e1071 (R-project).



3. ANALYSIS

3.1. The Dependence of Classification on the Lumi-
nosity Ratio

We analyzed how well the unresolved binaries can be
identified as a function of logarithmic luminosity ratio
log(L,) and magnitude for the two different cases of un-
derlying parameters (set A and B). The results for end-
of-mission (EM) photometry are shown in Figure 2 and
those for single shot (SS) photometry in Figure 3.

At low luminosity ratios (log(L,.) € ]0.0;0.5]), the clas-
sification is almost random for set A (~50%) even for
brighter systems, but not for set B: clearly, the more uni-
form distribution of temperatures and masses in set B al-
lows a better separation at small luminosity ratios (see
Figure 1). In set A, stars with small luminosity ratios are
rather similar (MS-MS combinations) so that the spectral
differences of the two components will be rather small
(the difficult classification cases). In set B, there is a
broader range of temperatures/masses so that it is more
likely that there are stars with different temperatures in
the binary system.

For larger luminosity ratios (log(L,.) € [0.5-1.0] and [1.0-
1.5]), we see a maximum in the classification perfor-
mance with a decline again for high luminosity ratios.
The performance for set B at the maximum is always be-
low that of set A but the overall shapes of the curves look
very similar. From Figure 1 we see that there are more
objects at higher luminosity ratios per luminosity inter-
val in set B than there are in set A. Since we plot limited
ranges of log(L), the results of set B thus always include
binaries with higher luminosity ratios (on average). For
higher absolute ratios, this means that a binary is natu-
rally more often falsely classified as a single star.

For high luminosity ratios, the performance to recognize
the object as a binary declines to that of a random classi-
fier (50%) for very large log(L,.) .

3.2. The Dependence of Classification on Tempera-
tures

Figures 4 and 5 show the classification performance as
a function of the first component’s temperature and the
overall luminosity ratio for end-of-mission photometry
and single shot photometry, respectively.

We observe large differences in the classification results
for set A and B for low temperatures (only temperature
of first component), while for higher temperature ranges
the performance is rather similar for different luminos-
ity intervals. For set A at low temperatures, G = 15 mag
(EM) objects we find a difference of almost 60 percentiles
between the classification performance for very different
luminosity ratio intervals, while for higher temperatures
(8000 K < Teg, < 12000 K) the difference is only ~ 30
percentiles. The same trend but even more pronounced is
observed for set B. Here we find that binaries where the
first component has a low temperature (first and second
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Figure 4. The conditional probability P(binary|BINARY)
as a function of magnitude for different luminosity ratios
and first component’s temperature ranges for set A (left
column) and set B (right column), only for end-of-mission
photometry. There are four temperature intervals (tem-
perature of the first component) from top to bottom and
six (logarithmic) luminosity ranges for each temperature
range. L1: 0.0 < log(L,) < 0.5, L2: 0.5 < log(L,) <
1.0,L3: 1.0 <log(L,) < 1.5, L4: 1.5 <log(L,) < 2.0,
L5: 2.0 <log(L,) < 2.5and L6: 2.5 <log(L,) < 3.5.

row) in combination with high luminosity ratios (L4 to
L6) are consistently misclassified: almost 90% of the bi-
naries are classified as stars and this trend only stops for
faint objects where the classification becomes random.

This systematic trend can also be seen in set A for inter-
mediate temperatures (second row), but to a much lesser
extent. A possible explanation for this is that binaries
with high luminosity ratios, where one component dom-
inates the light, are seen as single stars. However, this is
only part of the answer as can be seen from a compari-
son of set A and set B (EM) performances. Set B shows
stronger systematic misclassifications than set A, at least
for low- and mid-temperature regimes (first and second
row). If the first component has a low temperature and
there is a high log(LZ,.), then the second component is al-
most always a lower MS star for set A, given the con-
straint that My < M; and the steep slope of the IMF. As
a result, the total system will be very similar to that of a
single Red Giant. Since there are many red objects in the
training/validation set (see the temperature distributions
in Figure 1), and since no object type is preferred over
the other, the decision boundary probably runs randomly
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Figure 5. The same as in Figure 4 but for single shot
photometry.

between these objects in the 11 dimensional filter space.

In contrast, for set B, there are more cases for high
log(L..), where the second component is a high temper-
ature object on the upper MS if the first component is a
Red Giant. Since there are fewer red objects and since
both object types cover a larger range of temperatures,
it is thus possible that the Red Giant is indeed seen and
misclassified as a single star, i.e., the decision boundary
at low temperatures (and high log(L,)) is biased towards
stars.

The overall similarity of the figures for the different pho-
tometries (end of mission and single shot) at least for
higher temperatures of the first component are proba-
bly due to systematic misidentifications of the classifier
which are independent of the overall S/N.

4. CONCLUSIONS

The results show that:

1. the maximum of correctly identified binaries is at
logarithmic luminosity ratios of log(L,. )€ [0.5;1.0].

2. the classification performance depends on the signal
to noise andon the underlying grid of physical pa-
rameters.

3. the overall correct classification rate is rather low,
thus indicating that the identification of these objects
by medium band photometry alone is difficult.

The complete study, including the determination of stel-
lar parameters from simulated unresolved binaries can be
found in Willemsen et al. (2004).
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