483

THE JASMINE SSIMULATOR

Yoshiyuki Yamada, the JASMINE Working Group
Department of Physics, Kyoto University, Kyoto 606-8502, JAPAN

ABSTRACT

We explain the framework of simulation tools in the JAS-
MINE project. The JASMINE project stands at the stage
where its basic design will be determined in a few years.
Then it is very important to simulate the data stream gen-
erated by astrometric fields in JASMINE in order to sup-
port investigations of error budgets, sampling strategy,
data compression, data analysis, scientific performances,
etc. Of course, component simulations are needed, but to-
tal simulations which include all components from obser-
vation target to satellite system are also very important.
We find that new software technologies, such as Object
Oriented (OO) methodologies are ideal tools for the sim-
ulation system of JASMINE (the JASMINE simulator).

Key words: JASMINE; Simulator.

1. INTRODUCTION

The JASMINE project stands at the stage where its ba-
sic design will be determined in a few years. Then it
is very important to simulate the data stream generated
by astrometric fields at JASMINE in order to support in-
vestigations of error budgets, sampling strategy, scien-
tific performances, etc. The simulation system should in-
clude all components in JASMINE as ‘objects’ in order
to resolve all issues which can be expected beforehand
and make it easy to cope with some unexpected prob-
lems which might occur during the JASMINE mission.
Components include not only models of concrete mate-
rials such as scientific instruments and the satellite bus
system, but also abstract ones such as observation meth-
ods, orbits, data transfer, algorithms of data analysis etc.
Furthermore many researchers in various fields includ-
ing engineering of the bus system should participate in
developing the simulator. In that case the simulator in-
cludes many objects and furthermore flexibility and in-
teraction is needed to cope with the objects. On the other
hand, calibrations must be protected from unintentional
modification for each model of the objects. Then we con-
clude that the Object Oriented methodologies are ideal
for the demands described above in the simulator. High
maintainability and reusability of the object oriented ap-
proach is very useful in making the simulator system. We

are now constructing the JASMINE simulator using tech-
niques developed in the field of information science.

In Section 2, the requirements of the JASMINE simula-
tor are discussed. Section 3 contains some examples of
the JASMINE system investigations with the simulator
software. Section 4 is devoted to the future schedule on
software development.

In this paper we will make reference to terms with spe-
cific meaning within an object-oriented programming
context. These are:

class encapsulates common behavior of a group of ob-
jects;

attributes data member of a class;

methods functions which may be performed on instances
of a class;

object an instance of a class;

abstract class a class from which no instances may be
created;

inheritance a way to form new classes or objects using
predefined objects or classes where new ones simply take
over old one’s implementations and characteristics.

2. SPECIFICATION REQUIREMENT OF THE
FRAMEWORK

Implementation of the simulator is carried out in two
steps. In the first step, we construct or choose the frame-
work of the software. The second step is building soft-
ware which is JASMINE specific under the framework
built in the first step. In this section, we discuss the frame-
work of the JASMINE simulator.

The JASMINE simulator will be mainly used for assess-
ing the scientific goals of the mission, instrument design
investigation, data treatment preparation, and algorithm
study such as stellar image detection or evaluating astro-
metric parameters from raw data. The need for a clear,
modular and easily communicable structure for the simu-
lator led us to choose an object-oriented language for its
implementation.

484

In the simulator, each component of JASMINE is treated
as an ‘object” which has specifications as attributes. For
example, an object which represents a CCD detector has
attributes such as pixel size, number of pixels, quantum
efficiency, flatness, charge transfer rate, etc. Such at-
tributes affect the final scientific outputs.

Within the context of system investigations, some at-
tributes of some components may depend on other at-
tributes of other components. We can draw diagrams
which represent dependencies of each component (ob-
ject) by analyzing the above dependencies. It is called
a ‘Data Flow Diagram’. The framework is expected to
provide the function of creating and editing such ‘data
flow’ diagrams.

The ‘data flow” during JASMINE observations begins
with an astronomical object, is related to an optical sys-
tem, detectors, and data-processing units, and ends as
a communication system. One simple implementation
is specifying the relation of abstract classes which rep-
resent such components beforehand. Then, the frame-
work can deal with detailed investigations easily by mak-
ing concrete classes which are inherited from the abstract
classes. The following calculation is performed in the
flow of the JASMINE specification study,

NPSFU)D
f -)\ 9
where f, w, D, X are the total focal length of the opti-
cal system, pixel size of the CCD, diameter of a primary
mirror, and wavelength respectively, and Npgp is a con-
stant. An attribute of optical system f depends on an
attribute of detector w. These dependencies (‘data flow’)
have the opposite direction of a real ‘data flow’ in obser-
vation. One of the requirements of our simulator is that
we can specify the direction of ‘data flow’ in our diagram
as both in the same and counter direction as ‘data flow’
of a real observation.

From the above considerations, the framework of the
JASMINE simulator may have functions for managing
DAG (directed acyclic graph). To summarize the require-
ments:

computational modules are extendable,

data types are extendable,

open source (if using existing software),

some simple graphical tools are provided,

platform independent,

o g M w N oE

availability of treating distributed computation via
network.

Requirements (1)-(3) are critical and (4)-(6) are optional.

A schematic UML diagram of our prototype simulator is
shown in Figure 1. In our implementation of a prototype
simulator, each component, such as optical systems or
detectors, is inherited from an abstract class ‘model’. A

JasmineUl “project JsProject

1 1 [visit) : JaScheduleritam

JaSchedulerltem

1 [Faceeptln visitor : JsPraiect)

! %

JsConnector JsContainer JsScheduler | [items
1 1
Hupdatel) 1
“out ~out
i | -in 1 ~model
1
JsData
+ JaModel
frsetiin data - JsData)
‘ freetl) : JeData
JsDatalnt JsDataArray ?'—‘
1
Ui D Model Opti

Figure 1. UML diagram of the framework of prototype
simulator code. Names of classes JsModel, JsContainer,
JsConnector, and JsData correspond to ‘model’, ‘con-
tainer’, “‘connector’, and ‘data’ in the main text.

Figure 2. Start-up view of the JASMINE Simulator proto-
type.

class ‘container’ which manages dependency graph has
the class ‘model’. The structure ensures not also extend-
ability of modules but the arbitrariness of the direction of
dependency. Each directed arc is represented as a class
‘connector’, which encapsulates flowing ‘data’ between
two ‘models’. The abstraction ‘data’ ensures extendabil-
ity of data. The model can be easily extendable by mak-
ing subclasses of ‘model’.

3. CONTENTSOF OUR SIMULATOR

In this section, we show implemented results and imple-
mentation plans of JASMINE specific components. We
have already performed several items:

e observational method and accuracy,
e data reduction scheme,

o stellar image detection,

e data compression scheme,

o (] 3
el AN
latitude™10{dey) Jatitude deg
|
[o [A 1 09
30 -0 10 1] 1] 20 30
longitude™10(deg) longitude deg
R
T e e T T | 420
0 a0 1800 2700 3800
Band
z band ﬂ
Maxhlagnitude™10 Maxtlag
L
1 ' 1 1 1 .
-200 -100 o] 100 200 200
Wagnitude Range™10 IagRang
. ¢ o0 o g | 5.0
] 100 200 300 400
MaxDistance axDistanceikpe)
I
T o -
0 80 100 150 200
goDhsenation

Figure 3. StarCount Simulator.

star number counts,

optical system performance,

satellite attitude and accuracy,

orbits,

e etc.

In this section, we discuss two topics: the Galaxy model
and stellar count numbers, and simulations of the CCD
and focal plane.

3.1. Galaxy Model and Stellar Number Counts

The main targets of the JASMINE project are stars in
the Galactic disc and bulge. There is no complete ob-
servation which shows number density of stars brighter
than specified magnitude in the z-band and contained in
the Galactic disc and bulge. Thus, it is important to
forecast numbers of stars, data rate etc using the model
Galaxy which is well confirmed from observations. We
use Wainscoat et al. (1992) and Cohen (1994) for the
model of stellar number distribution in the Galaxy. This
model well reproduces 2MASS results. We also take mo-
tion of stars from the Evans model, and the distribution
of dust by COBE DIRBE data into account.

We implemented Star Count Simulator (SCS) first (see
Figure 3). This is the tool for calculating the number of
stars with arbitrary direction, arbitrary distance, and arbi-
trary spectrum types. This enable us to evaluate the num-
ber of stars observed at every moment. We also imple-
mented a three-dimensional viewer of the Galaxy model
(Figure 4).

485

Figure 4. 3D Galaxy view.

5E05
4E05
4E05
3605
3E05

‘‘‘‘‘

Figure 5. Time variation of Star Number

Figure 5 shows the time variation of the number of stars
observed by JASMINE. We cannot estimate the amount
of processing by average stellar density because the vari-
ability of numbers is very large. Such information is very
important for designing data processing unit and data
recorders.

3.2. Modéelling of CCD and Focal Plane Simulation

We have also started on implementing a CCD model. The
CCD can be modelled as the module which has many ac-
cumulator (pixel), data transfer mechanisms, and reading
mechanisms. Efficiency of accumulation (quantum effi-
ciency) is about 0.9 and depends on the wavelength. Data
(charge) transfer efficiency is extremely close to unity but
is not unity. Reading data has also some errors. These
effects are implemented as a probability process on the
CCD model. Satellite environments such as cosmic rays
may affect such probabilities.

Using our Galaxy model and satellite attitude model, a
list of stars contained in two fields of view are generated.
According to the attributes of each star such as distance,
spectral types, etc, photons are generated using a proba-
bility process. The astrometric optical system has a very
long focal length. The point spread functions are broad
compared with the pixel size. To generate images on the
focal plane also requires the use of a probability process.
From the above several probabilities processes, ‘times’
and ‘locations in detector plane’ pairs belonging to each
photon are generated. Each ‘photon’ may be the trigger
of the CCD model. By each trigger, the CCD model ac-
cumulates ‘charge’ of the appropriate ‘pixel’. Continuing
a pseudo exposure during an appropriate interval, we can
get a pseudo image of a JASMINE observation.

486

Figure 6. The first three principal modes of stellar image.

3.3. Data Compression

Table 1. Original data size is 720 bit. Compression rate
are approximately 60%.

NT residue | bit (pv) | bit (k) total
0 338.527 0 4 | 342.527
1 247.013 | 12.247 4 | 263.260
2 222.109 | 22.737 4 | 248.846
3 207.794 | 31.814 4 | 243.608
4 203.974 | 39.257 4 | 247.231
5 202.063 | 45.703 4 | 251.766
6 200.866 | 51.495 4 | 256.361
7 199.738 | 57.001 4 | 260.739
8 198.485 | 62.497 4 | 264.982

1: Number of principal value

Combination of Karuhnen-Loeve transformation and
Golomb-Rice code is suitable for compression of stel-
lar image data. We construct bases of Karuhnen-Loeve
transformation from 10 000 ideal pseudo data. The first
three principal components correspond to magnitude and
two coordinates of the centroid. In this method, we
achieve 60% compression for each 720 bit data.

4. CONCLUSION

We have already performed several investigations on the
JASMINE system design using Fortran, C++ and Java
codes.

ACKNOWLEDGMENTS

We would like to acknowledge Y. Kawakatsu, A. Noda,
A. Tsuiki, M. Utashima, A. Ogawa, N. Sakou, H.
Ueda, H. Okumura for their collaboration in the in-
vestigations on the JASMINE spacecraft system. Fur-
thermore we would like to thank Miyashita Hisashi at
IBM Tokyo Research for useful advice on general code
construction technique. This work has been supported
in part by the Grant-in-Aid for the Scientific Research
Funds(15340066) and Toray Science Foundation.

REFERENCES

Wainscoat, R.J., Cohen, M., Volk, K., Walker, HJ. &
Schwartz, D.E., 1992, Astrophys.J.Suppl. 83, 111

Cohen, M.,1994, Astrophys.J. 107, 582

