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ABSTRACT

Using a population synthesis model we estimate the frac-
tion of stars of different types that are likely to show
eclipses, as a function of the period. The population
model is based on the bse-code from Hurley et al. (2002)
which is a rapid binary evolution code that include all
common effects in close binaries such as mass transfer,
tidal locking, wind etc. We use this to evolve millions
of systems from original distributions in separation, mass
and eccentricity, with ages between zero and 12 Gyr, to
get a population of systems representative of our Galaxy.
The binary data from our model are then analysed in or-
der to, statistically, see how many eclipsing systems we
should have. This is done with a simple model where we
neglect limb-darkening and other complicating effects.
Assuming a random distribution of the inclination an-
gle the probability of an eclipse of a given depth, ∆m,
can easily be calculated. Adding a reasonable fraction of
true single stars, we can finally estimate the fraction of
eclipsing binaries in limited areas of the HR-diagram, as
a function of the period. A first comparison with observa-
tional data from the Hipparcos mission shows quite sat-
isfying agreement, and extrapolation to Gaia should thus
be a natural application. We find that Gaia will observe
about 500 000 eclipsing binaries, this (surprisingly) small
number arises from the fact that many eclipsing systems
will not be detected by Gaia.
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1. INTRODUCTION

The study of eclipsing binaries is an important tool to
get stellar parameters as well as general properties for bi-
naries. The distribution of the depth of the eclipses are
seldom studied, partly because the eclipsing systems dis-
covered are done so in an unsystematic way and therefore
are a most inhomogeneous sample. Some studies have
been made before, Giuricin et al. (1983) investigate the
implication of this to the mass ratio of binary systems,
however, it is difficult to draw any definitive conclusions
from such a sparse and inhomogeneous data sample.

The large scale surveys, such as Hipparcos, gives a much

more complete sample and some idea of the true statis-
tics, but unfortunately the number of eclipsing binaries
are also here rather small (a couple of hundred). Gaia will
increase this number drastically and we will have a com-
plete sample of hundreds of thousand systems to study,
which of course is a gold mine for statistical investiga-
tions. The question we are trying to answer in this article
is how many eclipsing binaries will be observed by Gaia
as well as how these will be distributed in periods and
eclipse depth – given reasonable input values to simulate
the Galaxy.

The eclipse probability depends mostly on the radius and
the orbit size of the system. Since the evolution of bi-
naries often include migration of the orbit size, it is im-
portant to start our simulation from a very wide period
distribution in order to catch the systems where the orbit
shrinks. Another very important factor is to include close
binary interaction since it is the systems with short peri-
ods that have the largest probability for eclipses, this is
done by using the bse-code by Hurley et al. (2002).

2. POPULATION SYNTHESIS MODEL

We are using a population synthesis model that evolves
our population of stars from initial distributions of age,
mass (m), mass ratio (q), distance (a), eccentricity (e) and
metallicity (Fe/H). These quantities are chosen to match
our Galaxy in a simple way. We have chosen the follow-
ing set of simple, time-independent recipes as summa-
rized below:

Ages: Constant star formation rate between 0-12 Gyr

System masses: IMF from Kroupa (2001)

ξ(m) ∼ mai a0 = 0.3 0.03 < m < 0.08

a1 = 1.8 0.08 < m < 0.50

a2 = 2.7 0.50 < m < 1.00

a3 = 2.3 1.00 < m < 50.0

Mass ratios: A small fraction (typically 20%) are kept
as single stars, but the majority are split into doubles
according to a fixed mass-ratio distribution:

f(q) = 0.446× [1 + 2N(0.2, 0.3) +

+2N(1.0, 0.05)],
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Figure 1. An illustration of how the eclipse depth, ∆m,
depends on the distance between the stars d = cos i.
The dashed curve gives the d corresponding to maximum
eclipse ∆m (see inlay).

where N(m, s) stands for a normal distribution with
a mean m and a standard deviation s, without the
normalization denominator. This f(q) is reasonably
flat, somewhat similar to the Duquennoy & Mayor
(1991) standard, but with a narrow excess of equal-
mass pairs. It has however been lessened since used
in Söderhjelm (2000).

Orbit sizes: The semi-major axes are taken from a log-
normal Duquennoy & Mayor (1991) distribution;
f(lg a) = N(1.5,1.5) −3 < lg a <5 au

Eccentricities: Distributed thermally for the largest or-
bits turning smoothly into a uniform distribution at
a < 10 au. The tidal evolution built into the bse-
code produces usually a rapid circularization for pe-
riods below some 10 days.

Metallicities: A broad age-independent distribution
similar to that observed in the solar neighbourhood
Nordstöm et al. (2004).

Given these input values we use a rapid binary evolution
code (bse) by Hurley et al. (2002) to evolve our systems
as we would see them today. This is possible due to the
fact that the bse-code can evolve millions of systems in a
matter of hours. The code is very fast thanks to the fact
that it approximates the evolutionary tracks in the HR-
diagram with polynomials. It also includes all features
associated with close systems such as:

mass transfer
tidal locking

circularisation
common-envelope

collision
supernova kicks

...

It is essential to have these close binary interactions for
our study since eclipsing binaries are prefentialy seen
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Figure 2. A histogram of the probability for an eclipse of
at least a depth of 0.1 mag for a given period, for different
types of systems. The brighter systems can be seen at
much larger periods mainly because the size of the stars.
O-systems cannot be closer than about 1.3 days due to
this simple fact as well.
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Figure 3. How the eclipse probability varies for F and G
systems for different periods. The different lines give the
probability for different eclipse depth, solid lines gives
depth from 0.1 to 0.5 mag, the dashed lines is 0.6 to 1.0
while the dot-dashed lines is 1.1 to 1.5 mag.

when the stars are close to each other and therefore
very likely to have undergone some kind of interaction.
The bse-code is accurate only down to a bona fide stel-
lar mass-limit around 0.08 M¯. For any component of
lower mass, we have added an extra grid with data due to
Baraffe et al. (1998), giving more realistic cooling brown
dwarfs.

The bse code gives ‘theoretical’ stellar parameters
(lg Teff/Mbol), and our crude transformations to ‘ob-
served’ (V, V − I) are based on Flower (1996) with some
simplistic extensions towards cooler systems.

3. ECLIPSE MODEL

The population synthesis gives a number of binaries with
known properties, among them the orbit size, period, stel-
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Table 1. The probability to have an eclipse with a depth of at least 0.1 mag, for different periods (observe that only short
period systems are in the table). Above is the mean probability for eclipses for the different bins, Pe, while the fraction of
observed eclipsing binaries relative to all stars in the same HR diagram bin is below (Oe).

Pe-values
Bin 0.175 0.25 0.36 0.51 0.72 1.02 1.44 2.04 2.88 4.08 5.76 8.16 11.5 16.3 23.0 32.5
O - - - - - - -0.50 -0.39 -0.55 -0.79 -1.00 -1.13 -1.25 -1.39 -1.54 -1.71

OB - - - -0.22 -0.31 -0.36 -0.44 -0.55 -0.74 -0.92 -1.04 -1.21 -1.41 -1.61 -1.89 -2.29
B -0.87 -1.00 -0.74 -0.43 -0.42 -0.49 -0.63 -0.83 -1.05 -1.16 -1.32 -1.53 -1.74 -2.00 -2.39 -2.94
A -0.92 -0.95 -0.79 -0.68 -0.69 -0.84 -1.04 -1.17 -1.26 -1.46 -1.69 -1.89 -2.16 -2.59 -3.18 -4.13

FG -1.05 -0.89 -0.87 -0.95 -1.05 -1.18 -1.29 -1.49 -1.75 -1.98 -2.25 -2.70 -3.32 -4.30 -5.92 -
K -0.93 -0.91 -0.95 -1.03 -1.31 -1.63 -1.77 -1.92 -2.17 -2.59 -3.57 - - - - -

M(a) -0.70 -0.86 -1.15 -1.37 -1.44 -1.60 -1.81 -2.16 -2.92 -4.48 - - - - - -
M(b) -0.78 -1.16 -1.61 -1.73 -1.86 -2.16 -2.58 -3.64 - - - - - - - -
Brdw -1.00 -1.45 -1.80 -2.15 -2.56 -3.31 -4.35 -6.41 - - - - - - - -

Oe-values
O - - - - - - -4.19 -3.36 -3.12 -3.15 -3.20 -3.24 -3.30 -3.41 -3.51 -3.63

OB - - - -6.09 -4.30 -3.43 -3.05 -2.91 -3.01 -3.14 -3.22 -3.35 -3.50 -3.64 -3.86 -4.19
B -6.73 -7.01 -6.11 -4.45 -3.47 -3.05 -2.92 -3.00 -3.14 -3.22 -3.35 -3.51 -3.68 -3.89 -4.25 -4.77
A -5.97 -6.02 -4.83 -3.69 -3.20 -3.15 -3.26 -3.33 -3.42 -3.60 -3.81 -3.96 -4.20 -4.57 -5.13 -6.06

FG -5.48 -4.93 -4.39 -4.02 -3.82 -3.72 -3.66 -3.72 -3.89 -4.14 -4.45 -4.90 -5.47 -6.41 -7.99 -
K -5.34 -5.00 -4.67 -4.36 -4.29 -4.28 -4.19 -4.21 -4.48 -4.90 -5.86 - - - - -

M(a) -4.09 -4.01 -4.08 -4.13 -4.08 -4.23 -4.39 -4.67 -5.38 -6.86 - - - - - -
M(b) -3.81 -3.96 -4.24 -4.33 -4.54 -4.85 -5.21 -6.23 - - - - - - - -
Brdw -4.22 -4.33 -4.50 -4.80 -5.30 -6.07 -7.04 -9.04 - - - - - - - -

lar radii and luminosities. Assuming a random inclination
angle, i, it is straightforward to calculate the likelihood
to have an eclipse of a given depth. In our study, we
take the simple approach and neglect limb darkening, as
well as all light-curve complications due to tidal deforma-
tion and/or reflection effects. Once these assumptions are
made the probability, Pe(∆m), to have a primary eclipse
with an eclipse depth larger than ∆m is a simple mat-
ter of calculating eclipse light-curves at different inclina-
tions. The radii relative to the orbit-size is rs = Rs/a and
rg = Rg/a, where s and g stand for smaller and greater,
are the interesting parameters, together with the relative
(V -band) luminosities Ls and Lg , where Ls + Lg = 1.
In the uniform-disc approximation, it is easy to calculate
the maximum eclipse depth (in magnitudes) as a func-
tion of the minimum distance between the components
d = (cos i), see Figure 1. This function can now be (iter-
atively) inverted, to give the inclination corresponding to
a given eclipse depth. Assuming random inclinations, the
probability for an inclination above i is simply cos(i), and
in this way we may calculate for each system the eclipse
probabilities Pe(∆m).

For main sequence stars of roughly constant size, the Pe-
values typically decrease as a−1, or as P−2/3. Longer
periods also mean narrower eclipses, however, and there
is an observational bias against discovering such rare
eclipses. To account for this effect, a non-zero Pe-value
is only calculated if the ∆m is larger than 0.1 magni-
tude for at least 5% of the orbit. We have then calculated
the mean eclipse probabilities in small bins of period and
in some 20 different areas of the HR-diagram. Because
most eclipses involve a main-sequence star, the 10 bins
along the MS are the most interesting ones. Generally,
because the stellar radii increase with mass, the eclipse
probabilities also increase with mass. For comparisons
with observed eclipsing binaries, we have also calculated
the fraction of eclipsing binaries (of a certain ∆m) rel-
ative to all stars (binary and single) in the same HR di-
agram bin. These eclipsing binary fractions are called
Oe(∆m) and means over the HR diagram bins were de-
rived as for Pe(∆m).

4. RESULTS

From our model, we calculate how likely it is for a given
system to eclipse to a depth of ∆m at a period P . Us-
ing the means over HR diagram bins, we can construct
histograms like Figure 2, giving the eclipse probability
at a certain absolute magnitude and a certain period. The
higher-mass stars are larger, and are more likely to eclipse
even at long periods. There is also in each group a min-
imum period, corresponding to contact systems. In Fig-
ure 2, this limit is only visible for the large O-systems,
otherwise it is hidden beyond the left edge of the dia-
gram. Note also the logarithmic scale, the probability
drops very fast as one moves to longer periods or less
massive systems. In Figure 3 the probability for F and
G stars (2.5 < MV < 5.5) are plotted for increasingly
deeper eclipses, ∆m goes from 0.1 to 1.5 mag for the
different curves. One can clearly see that the likelihood
for deep eclipses is much less, a factor of about 100 for
eclipses with ∆m ≥ 1.0 in comparison to the shallow 0.1
eclipses.

We can summarize our Pe and Oe-means in tables giving
the (log) of the probability for an eclipse of (at least) a
certain depth ∆m as a function of period and absolute
magnitude. In Table 1 is an example with ∆m > 0.1.
The column headers give the mean periods in days.

5. PREDICTIONS FOR GAIA

As a test, we have applied the Pe results to a crude model
galaxy designed to simulate the Gaia binary star obser-
vations. The model includes realistic close binaries, and
using the above principles, we calculated an eclipse prob-
ability for each simulated binary, giving a direct estimate
of the number of eclipsing binaries observable by Gaia.
The same model Galaxy gives an HR-diagram that can be
simply subdivided in the MV ‘bin’-system used for Pe,
and it is a simple matter to derive the Pe summed over all
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Figure 4. To the left is a comparison between the number of early type eclipsing binaries in the Hipparcos Catalogue
(lines with points) and our theoretical B-star Oe data (lines). The three curves are for eclipses of minimum depth 0.1, 0.4
and 0.7 magnitudes. To the right are three different calculations of the number of eclipsing binaries (with ∆m > 0.1)
observable by Gaia. The solid curve is a direct calculation, using individual Pe for each binary system and including
giant systems. The long dashed curve is an estimate derived from mean eclipse probabilities Pe (main sequence only).
The upper short dashed curve is a result using Oe means, and the differences relative to the long dashed curve comes from
a different input period-distribution. The lower short dashed curves correspond to eclipse depths larger than 0.5, 1.0, 1.5
or 2.0 magnitudes.

absolute magnitudes. As seen in the right of Figure 4, the
two calculations do agree as well as could be expected.
The long-period deviation is easily explained as the (rare)
eclipses in giant-star systems, which were by design not
included in Pe means. At the peak (and in the total num-
bers), the Pe-results are too high by about a factor of two.
The effect is largest at faint apparent magnitude, and it is
probably caused by extinction effects changing the MV

distributions in the broad Pe bins.

By oversight, the input distribution of semi-major axes
in the galaxy model was truncated at a larger value than
in the population synthesis. Therefore, the even simpler
calculation, using only Oe(MV ) plus the number of stars
in each of the MV -bins gives more close eclipsing bina-
ries than the Pe calculation, but with a virtually identical
long-period part. Apart from this well-understood effect,
however, the Oe-means can be used to give a qualita-
tively correct picture of the period- and ∆m-distributions
for the eclipsing binaries observable by Gaia. Because
of the low eclipse-probabilities, the ‘true’ curve in Fig-
ure 4 can only be defined when both the magnitude range
and the sky coverage are large. The Pe/Oe-method can
be applied to an arbitrarily small area of sky or magni-
tude range, however, giving expectation values instead of
unusable ‘small-number’ counts. This is important espe-
cially for the deep eclipses, which are seen in Figure 4 to
be relatively very scarce.

A crude but satisfying test of our procedures could be ob-
tained from Hipparcos data. Assuming reasonably com-
plete discovery of eclipsing binaries, we could make the
‘small-number’ statistical comparison in Figure 4. In this
case our Oe data needed only to be multiplied by the
number of stars in the Hipparcos sample (22 600) to give
the expected number of eclipsing binaries in successive
factor 2 period bins.
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