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ORBIT DETERMINATION FOR GAIA SPECTROSCOPIC BINARIES
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ABSTRACT

Synthetic radial velocities for a population of 2300+
known spectroscopic binaries are generated according to
the present scanning law. The effect of the distribution
of the observations and of the noise on the orbit fitting is
investigated. According to our preliminary results short
periods, below one day, will be hard to identify among the
many aliases, even in the absence of noise. Requirements
in terms of computing power for this shell task are esti-
mated in conjunction with the adopted algorithm for the
period search part of the orbit reconstruction. These re-
sults are for binaries detected in the Radial Velocity Spec-
trometer only.
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1. A BIT OF RANDOMNESS WOULD BE NICE!

The number of Radial Velocity Spectrometer observa-
tions at the end of the mission according to the Nominal
Scanning Law (NSL, Lindegren 2001) is plotted in Fig-
ure 1. On average, each area will be observed 66±19
times. Even at the lower-end, the number of data exceeds
the number of orbital parameters by a factor 5.

Due to the NSL, even in the absence of noise, the spectral
window (Figure 2, top panel) exhibits a peak at 6 hours
causing a comb-like structure in the power spectrum (Fig-
ure 2, central panel). There is no guarantee that the left-
most or highest peak of the power spectrum matches the
right period. The great regularity of the NSL is responsi-
ble for lots of aliases and the orbit determination of very
short period binaries will be difficult. There is no way to
know whether we are identifying the genuine period or
one of its aliases.

We thus study the effects of the NSL and the precision of
radial velocities on the spectroscopic orbit determination
problem using synthetic data of real binary systems. We
first guess the period of the orbit and then, for true re-
covered period, we derive the other parameters. The sit-
uations of radial velocity variables and photometric vari-
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ables are quite different. Indeed, the temporal distribu-
tion of the two sets of data will be different because of
the number and location of the detectors.

Figure 1. Number of RV observations according to the
Nomimal Scanning Law described in Lindegren (2001).
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Figure 2. Spectral window (top) and power spectrum
(central panel) for given radial velocities.
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2. SIMULATIONS WITH KNOWN SPECTRO-
SCOPIC BINARIES

The real binaries were retrieved from the 9th Catalogue
of Spectroscopic Binary Orbits (Pourbaix et al. 2004).
Their distribution with respect to the period is given in
Figure 3.

Figure 3. Top panel: Distribution of the period. Bottom
panel: Period-amplitude diagram.

Owing to the repetitive patterns of the NSL, we can limit
the analysis to the [0,15◦] × [0,60◦] grid. Radial veloc-
ities are generated for all binaries assuming a Gaussian
noise of 1, 5 and 10 km s−1. To obtain a periodogram and
thus derive a first guess of period, we used the algorithm
by Scargle (1982). The percentage and the distribution
of recovered periods as a function of noise are plotted in
Figures 4 and 5. The period is assumed to be recovered if
it is off by less than 10% with respect to the period used
for the simulations.

In the absence of noise, 25% of the right periods are
missed owing to aliases. The effects of the scanning law
are completely washed out. Thus, the number of observa-
tions does not compensate for the increase in noise. The
percentage of periods recovered within 10% from the true
value continuously vanishes as the noise increases.

What about the RV amplitude determination once the pe-
riod is accurately guessed?

As illustrated in Figure 6, the longest accessible period
decreases as the noise increases and there is almost no ef-
fect on amplitude determination for short period orbits.
Since the long periods correspond to small K, the ef-
fect noticed is essentially S/N-driven (Figure 3, bottom
panel).
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Figure 4. . Map of the percentage of recovered periods.
At the noise level, 0, 1, 5 and 10 km s−1. The quoted
percentages do not account for systems discarded for S/N
below 3.
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Figure 5. Effect of a noise on period determination. The
quoted percentages do not account for systems discarded
for S/N below 3.

3. PRACTICAL CONSIDERATIONS

Several period search algorithms were tested (Deeming
1975; Scargle 1982). Though the former provides both
the spectral window and the power spectrum, thus mak-
ing it possible to discard many aliases (Roberts et al.
1987), it does not perform significantly better than the
latter in terms of identifying the true period.

Indeed, labeling ν1 and ν2 the significant lowest two
peaks of the comb-like power spectrum, there is an in-
teger N such that the orbital frequency νo satisfies either
one:

ν = Nν2 + (N − 1)ν1,

ν = Nν2 + (N + 1)ν1,

with ν1 + ν2 = 4d−1. There is no guarantee that νo

corresponds to either N = 0 or N = 1.
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Figure 6. Effect of a noise of 0, 1, 5, and 10 km s−1 on amplitude using the method of Lehmann-Filhés (left) or a Fourier-
like method (right) to derive a first guess of the orbital parameters in case of good periods. The quoted percentages do
not account for systems discarded for S/N below 3.

Cleaning algorithms such as the one by Roberts et al.
(1987) help identifying ν1 and ν2 but that is clearly not
enough since νo might not be one of them. However,
once those two frequencies are identified, the quest for νo

is significantly boosted and it no longer takes that many
iterations to reach the Nyquist frequency.

Although the period plays an important role in the deriva-
tion of the other orbital parameters, one cannot overlook
the other parameters. Here also, several methods have
been proposed (Binnendijk 1960). Unfortunately, most
of them rely upon the availability of the velocity curve to
either measure some area or to pick up a few key values.

The method of Lehmann-Filhés (LF) essentially needs
the velocity curve in order to compute a surface from
which V0 is derived. In the case of Gaia, the number of
observations is large enough to assume that the area based
on the polygonal contour of the data points is a good ap-
proximation of the curve-based area. When the noise
is low, all the quantities required by LF can be derived
thanks to that contour. The derivation of a first guess of
the orbital parameters is then straightforward and they are
close to the true values. The robustness of the method
becomes more questionable as the uncertainty on the ve-
locities increases.

In order to achieve a much higher robustness, a Fourier-
based method similar to the one by Monet (1979) has
been tested as well. The idea here is to fit the radial veloc-
ities with a second order Fourier series. The drawback of
this approach comes from the difficulty to express the or-
bital parameters in terms of the coefficients of the series.
That is especially true for the eccentricity. We investi-
gated the effect of the degree of the expansion series and
concluded that going any higher than the second order is
not justified. The robustness of the method is way higher

than with LF.

The better robustness of the Fourier approach with re-
spect to LF is illustrated in Figure 6 for 5 and 10 km s−1

noise only (we did not run the simulations in case of
very low noise and no noise at all). For instance, there
are about 15% more amplitudes correctly estimated at
P = 10 days with Fourier than with LF at the 10 km s−1

error level.

The final solution results from a nonlinear minimization
of the χ2 using a gradient-like method. At this stage, un-
like at the previous one, the period is released and there-
fore fitted together with the other parameters. It is worth
keeping in mind that the initial value of the period relies
upon the assumption that it is a pure sine curve (circu-
lar orbit). Therefore, some tuning of the period might be
needed if the orbit turned out not to be circular. Practi-
cally, the period based on the circular assumption is close
enough to the truth for the other parameters not to be
completely messed up.

It is nevertheless possible that an even better solution
(i.e., a lower χ2) could be achieved if the nonlinear χ2

minimization was carried on for each individual tested
frequency. The cost in terms of computation time would
be likely prohibitive and does not seem to be justified so
far.

The CPU time for the overall orbit determination essen-
tially follows the number of data points (Figure 7). How-
ever, that figure reflects the time spent by the process at
a given time of the mission, without accounting for the
evolution of the temporal distribution of the observations
during the mission. About 38% of the CPU time is ex-
pended in the period search (leading section of the code
in terms of computing time). The time spent at that stage
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Figure 7. Evolution of the CPU time (the darker the
longer).

depends much more on the time interval covered by the
observations than on the actual number of observations.
Hence, expanding the data set with just one observation
6 hours or 30 days later has very different consequences
on the actual duration of the orbit fitting.

Even though the period search is the bottleneck in the or-
bit derivation, there are several possibilities to improve
the situation. One relies upon some astrophysical con-
siderations. As illustrated by Pourbaix et al. (2004), the
Roche lobe filling case defines the shortest orbital period
which can be fairly guessed from the position of the star
on the Hertzsprung-Russell diagram. For instance, it does
not make sense to look for orbital periods down to a few
hours around giant stars. The main drawback of that ap-
proach is that the observed coloUrs can be misleading.

There are nevertheless reasons to be optimistic. Some
short period spectroscopic binaries will be eclipsing as
well thus making the period derivable from photometry
too. In such cases, one can initially assume the pho-
tometric period in the spectroscopic fitting process and
see what it leads to. Furthermore, the actual scanning
law might not be as regular as the NSL which will also
substantially reduce the number of aliases of the period
present in the power spectrum.
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