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ABSTRACT

Eclipsing binaries are extremely attractive objects be-
cause absolute physical parameters (masses, luminosi-
ties, radii) of both components may be determined from
observations. Since most efforts to extract these param-
eters were based on dedicated observing programmes,
existing modelling code is based on interactivity. Gaia
will make a revolutionary advance in shear number of
observed eclipsing binaries and new methods for auto-
matic handling must be introduced and thoroughly tested.
This paper focuses on Nelder & Mead’s downhill simplex
method applied to a synthetically created test binary as it
will be observed by Gaia.
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1. INTRODUCTION

Many assessments have already been done for Gaia’s
expected harvest of eclipsing binaries (EB) to V < 15,
where both photometric and RV observations will be
available (see Munari et al. 2001, Zwitter et al. 2003,
Marrese et al. 2004 and others). Out of 50 million ob-
served stars, roughly 100 000 will be double-lined eclips-
ing binaries. However, based on experience from Hippar-
cos, out of 1 billion stars observed to V<20, there will be
∼2 million (Eyer 2005) eclipsing binaries without spec-
troscopic observations, but with quite decent photomet-
ric accuracy. This study presents a new approach devel-
oped for automatic reduction of observed data along with
an estimate of how much we may expect to obtain from
them.

2. THE METHOD

Obtaining physical parameters from observations is an in-
verse problem solved numerically by a modelling pro-
gramme. Affirmed and most widely used is the WD
code (Wilson & Devinney 1971), which features Differ-
ential Corrections method (DC) powered by the Method

of Multiple Subsets (MMS) (Wilson 1993). The DC
method has already been applied successfully to auto-
matic parameter extraction (see e.g., Wyithe & Wilson
2001, 2002; Prša 2003), but its original philosophy is
based on interactive monitoring of each convergence step.
The algorithm is very fast and works well if the discrep-
ancy between the observed and computed curves is rel-
atively small, but it tends to diverge or give physically
unmeaningful results if the discrepancy is large. As part
of an effort to create a reliable and powerful package for
EB analysis, a complementing minimization scheme is
proposed.

2.1. Nelder & Mead’s Downhill Simplex

There are two main deficiences of the DC method that are
especially striking. 1) Once a DC method converges to a
minimum, there is no way of telling whether that mini-
mum is local or global; even if it is local, the method is
stuck and cannot escape. 2) The main source of diver-
gence and the loss of accuracy in the DC algorithm is the
computation of numerical derivatives.

To circumvent these two problems, Nelder & Mead’s
downhill Simplex1 method (Nelder & Mead 1965), here-
after NMS, is implemented. Since NMS doesn’t compute
derivatives but relies only on function evaluations, it is
a promising candidate for our purpose. The basic form
of the NMS method along with WD implementation was
first proposed by Kallrath & Linnell (1987). We take a
step further and adapt the method specifically to EBs.

The NMS method acts in n-dimensional parameter hy-
perspace. It constructs n vectors pi from the vector of
initial parameter values x and the vector of step-sizes s

as follows:

pi = (x0, x1, . . . , xi + si, . . . , xn) (1)

These vectors form (n + 1) vertices of an n-dimensional
simplex. During each iteration step, the algorithm tries
to improve parameter vectors pi by modifying the ver-
tex with the highest function value by simple geometrical

1Nelder & Mead’s downhill simplex is not to be confused with linear
or non-linear programming algorithms, which are also referred to as
Simplex methods.
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transformations: reflection, reflection followed by expan-
sion, contraction and multiple contraction (Galassi et al.
2003). Using these transformations, the simplex moves
through parameter space towards the deepest minimum,
where it contracts itself.

PHOEBE2 is a software package built on top of the WD
code that extends its basic functionality to encompass,
among other extensions summarized in Prša & Zwitter
(2005), the NMS method. It is especially suited for EBs:
powered by heuristic scans, parameter kicking and con-
ditional constraining, the method is able to efficiently es-
cape from local minima.

2.2. Heuristic Scan

NMS is a robust method that always converges, but it can
converge to a local minimum, particularly since param-
eter hyperspace in the vicinity of the global minimum is
typically very flat, with lots of local minima. In addition,
the global minimum may be shadowed by data noise and
degeneracy.

The heuristic scan is a method by which a minimiza-
tion algorithm selects a set of starting points in parameter
hyperspace and starts the minimization from each such
point. It then sorts all solutions by the cost function (the
χ2, for example) and calculates parameter histograms and
convergence tracers for given hyperspace cross-sections
(specific examples are given in Section 4). The way of
how the algorithm selects starting points is determined by
the user: the points may be gridded, stochastically dis-
persed, distributed according to some probability distri-
bution function (PDF) etc. The basic idea of the heuristic
scan is to obtain decent statistics of adjusted parameter
values from which a fair and realistic error estimate may
be given.

2.3. Parameter Kicking

Another possible approach to detect and escape from lo-
cal minima is to use some stochastic method like Simu-
lated Annealing (SA). However, such methods are notori-
ously slow. Since the EB hyperspace is typically very flat,
stochastic methods would be practical only in the vicin-
ity of the global minimum. Thus instead of a full-featured
SA scan, a simple new procedure has been developed that
achieves the same effect as stochastic methods, but in sig-
nificantly shorter time.

The idea is as follows: whenever NMS reaches a min-
imum within a given accuracy, the algorithm runs a
globality assessment on that minimum. If we presume
that standard deviations σk of observations are estimated
properly and that they apply to all data points regardless
of phase or nightly variations, we may use them for χ2

weighting:

χ2
k =

M
∑

i=1

wk(xi − x̄)2 =
1

σ2
k

M
∑

i=1

(xi − x̄)2, (2)

2http://phoebe.fiz.uni-lj.si

where index i runs over M measurements within a sin-
gle data set and index k runs over N data sets (different
photometric curves). Since the variance is given by:

s2
k =

1

Nk − 1

∑

i

(xi − x̄)2, (3)

we may readily express χ2
k as:

χ2
k = (Nk − 1)

s2
k

σ2
k

(4)

and the overall χ2 value as:

χ2 =
∑

k

(Nk − 1)

(

sk

σk

)2

(5)

If σk are fair and all data sets contain approximately the
same number of observations, then the ratio sk/σk is of
the order unity and χ2 of the order NM . This we use for
parametrizing χ2 values:

χ2
0 = NM, λ :=

(

χ2/χ2
0

)

: quantization. (6)

Parameter kicking is a way of knocking the obtained
parameter-set out of the minimum: using the Gaussian
PDF, the method randomly picks an offset for each pa-
rameter. The strength of the kick is determined by the
Gaussian dispersion σkick, which depends on λ: if the
value is high, then the kick should be strong, but if it is
low, i.e., around λ ∼ 1, then only subtle perturbations
should be allowed. Experience shows that a simple ex-
pression such as:

σkick =
0.5λ

100
(7)

works very reliably. This causes σkick to assume a value
of 0.5 for 10σ offsets and 0.005 for 1σ offsets, being lin-
ear in between. Note that this σkick is relative, i.e., given
by:

σabs
kick = xσrel

kick, (8)

where x is the value of the given parameter.

2.4. Conditional Constraining

Having purely photometric (LC) observations, it is im-
possible to determine absolute physical parameters of the
observed binary. However, if the distance to EB is mea-
sured independently or if additional assumptions about
the EB are set, even purely photometric observations can
yield absolute values of physical parameters. If addi-
tional constraints are imposed on the model from the out-
side, the model is referred to as conditionally constrained
(CC’d).

Two CCs are immediately evident: 1) astrometric mea-
surements on-board Gaia may be used to measure the
distance with the accuracy of ∼ 11 µas at V = 15 to
∼ 165 µas at V = 20 (ESA 2000); 2) since a substan-
tial number of stars are main-sequence stars, M–L, L–T
and T–R relations may be adopted as constraints. See
Prša & Zwitter (2005) for details on CC implementation
in PHOEBE.



613

3. SIMULATION

To test the suitability of NMS for EBs, we built a
partially-eclipsing synthetic main-sequence F8 V–G1 V
binary using PHOEBE. Table 1 lists all of its princi-
pal parameters. The simulation presented in this paper
is based exclusively on photometric data: two sets of
observations corresponding to Johnson B and V filters
are created, each with 82 points with Poissonian scatter
σobs = 0.02 mag at V = 20, values typical to expect from
Gaia (ESA 2000).

Simulation flow is the following: all physical parameters
set for adjustment (a, i, T1, T2, Ω1, Ω2, L1 and L2) were
displaced by∼50%. The obtained set was used as the ini-
tial guess for the NMS. In the first part of the simulation
the method converges to a solution using only heuristic
scan and parameter kicking, which yields relative values
of parameters. In the second part the simulation was addi-
tionally CC’d by the main-sequence constraint to obtain
absolute values of parameters.

Table 1. Principal parameters of the simulated binary.

Parameter [units] Binary
F8 V G1 V

P0 [days] 1.000
a [R¯] 5.524
q = m2/m1 0.831
i [◦] 85.000
Teff [K] 6200 5860
L [L¯] 2.100 1.100
M [M¯] 1.236 1.028
R [R¯] 1.259 1.020
Ω [−] (a) 5.244 5.599

(a)Unitless effective potentials defined by
Wilson (1979).

4. RESULTS

An heuristic scan over all adjustable parameters has been
performed to obtain accurate convergence statistics: over
2000 uniformly distributed starting points in parameter
hyperspace were used during the simulation. We present
the results of the overall minimization step-by-step.

a) Convergence assessment. Depending on the bumpi-
ness of the hyperspace, an heuristic scan will generally
yield different solutions from different starting points; it
is our hope that only few of these solutions will account
for most scans. To evaluate their quality, the globality
assessment mechanism introduced in Section 2.3 is used
to sort solutions by the depth of the reached minimum.
Tests show that the NMS method itself is all-too-often
stuck in local minima and only ∼15% of all runs end up
within one per cent of ideal λ (λ=1 in case of Figure 1).
However, tests also show that parameter kicking signif-
icantly improves this percentage (∼50% after the first

Figure 1. λ-histograms for 3 consecutive parameter
kicks. Top-left figure demonstrates how numerous are lo-
cal minima and how difficult it is for NMS to circumvent
them. The other three figures show significant improve-
ment by using parameter kicking. Histograms consist of
20 bins (single bin width is 0.01). The last bin encom-
passes all higher values of λ. Labels (a) through (d) are
used consistently throughout the paper.

Figure 2. Convergence tracers for 3 consecutive param-
eter kicks. These plots trace convergence steps within 2D
cross-sections of the hyperspace, revealing areas of min-
ima and degeneracy. Cross-hairs mark the location of the
global minimum.

kick, ∼63% after the second and ∼75% after the third
kick); even more, parameter kicking also enhances con-
vergence speed after each kick.

Although the values of λ may seem promising, they don’t
necessarily guarantee that the corresponding solution is
optimal. Rather, additional assessments should be done.
Figure 2 shows convergence tracers: 2D cross-sections
of parameter hyperspace tracing convergence from each
starting point of heuristic scan to the corresponding so-
lution. Such tracers clearly show areas of minima and
degeneracy. Since the location of the global minimum is
not known in real life, extra care should be taken to never
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Figure 3. Histogram of the inclination for 3 consecutive
parameter kicks. Histogram consists of 20 bins with 0.5◦

each. The solution is symmetric to i =90◦, but we adopt
i <90◦ by convention.

blindly trust the statistics of such a degenerate problem.

b) Statistics of obtained parameters.The usual prac-
tice in the literature, when listing obtained parameters
from the model, is to give their values with formal er-
rors, i.e., standard deviations reported by the used numer-
ical method. These errors are often too optimistic, since
degeneracy and noise noticeably contribute to the over-
all error. NMS powered by heuristic scan and parameter
kicking has the advantage of obtaining parameter errors
statistically, independent of the method itself. Figure 3
shows an example of an obtained histogram for inclina-
tion i. It is evident that for the NMS without parameter
kicking (and similarly for any other numerical method
that cannot escape from local minima) any eclipsing sys-
tem is a tie; for a fully minimized solution (bottom right
plot on Figure 3) the error is simply standard deviation
of the Gaussian being fitted over the histogram, yielding
roughly 0.5◦.

c) Conditional constraining. Inclination is the only
intrinsic parameter that may be obtained in an absolute
sense from photometric observations. Using CC this de-
ficiency is removed: any particular CC adds one or more
implicit parameter ties into the system. It basically intro-
duces an intersection plane with the otherwise degener-
ate part of the hyperspace, thus eliminating degeneracy.
Figure 4 demonstrates how a main-sequence constraint
breaks the degeneracy for gravity potentials Ω1,2.

5. DISCUSSION

The idea behind the NMS implementation is not to re-
place the DC method but to complement it. DC is created
for interactive usage and converges in discrete steps that
need monitoring. NMS on the other hand aims to auto-
mate this process so that intermediate monitoring is no
longer necessary, which is a key goal for Gaia. DC is one
of the fastest methods (WD’s DC in particular, since it
is optimized for EBs), but may easily diverge. At the ex-
pense of speed, NMS is one of the most robust algorithms
for solving non-linear problems and never diverges. Fi-
nally, both DC and NMS methods suffer from degener-
acy and may be stuck in local minima. To overcome this,

Figure 4. Main-sequence constrained convergence trac-
ers for 3 consecutive parameter kicks. Comparing this re-
sult to Figure 2 clearly shows that the intersection of both
areas indeed gives the right solution. This is expected,
since our synthetic binary is in fact a main-sequence bi-
nary.

DC is complemented by the MMS and NMS is comple-
mented by heuristic scan and parameter kicking. These
differences in intent make a combination of both meth-
ods a powerful engine for solving the inverse problem.
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