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ABSTRACT

Techniques for the construction of dynamical Galaxy
models should be considered essential infrastructure that
should be put in place before Gaia flies. Three possi-
ble modelling techniques are discussed. Although one of
these seems to have significantly more potential than the
other two, at this stage work should be done on all three.

A major effort is needed to decide how to make a model
consistent with a catalogue such as that which Gaia will
produce. Given the complexity of the problem, it is ar-
gued that a hierarchy of models should be constructed, of
ever increasing complexity and quality of fit to the data.
The potential that resonances and tidal streams have to in-
dicate how a model should be refined is briefly discussed.
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1. INTRODUCTION

A central goal of the Gaia mission is to teach us how the
Galaxy functions and how it was assembled. We can only
claim to understand the structure of the Galaxy when we
have a dynamical model galaxy that reproduces the data.
Therefore the construction of a satisfactory dynamical
model is in a sense a primary goal of the Gaia mission, for
this model will encapsulate the understanding of galactic
structure that we have gleaned from Gaia.

Preliminary working models that are precursors of the fi-
nal model will also be essential tools as we endeavour to
make astrophysical sense of the Gaia catalogue. Con-
sequently, before launch we need to develop a model-
building capability, and with it produce dynamical mod-
els that reflect fairly fully our current state of knowledge.

2. CURRENT STATUS OF GALAXY MOD-
ELLING

The modern era of Galaxy models started in 1980, when
the first version of the Bahcall-Soneira model appeared
(Bahcall & Soneira 1980). This model broke new ground

by assuming that the Galaxy is built up of components
like those seen in external galaxies. Earlier work had cen-
tred on attempts to infer three-dimensional stellar densi-
ties by directly inverting the observed star counts. How-
ever, the solutions to the star-count equations are exces-
sively sensitive to errors in the assumed obscuration and
the measured magnitudes, so in practice it is essential to
use the assumption that our Galaxy is similar to exter-
nal galaxies to choose between the infinity of statistically
equivalent solutions to the star-count equations. Bahcall
& Soneira showed that a model inspired by data for exter-
nal galaxies that had only a dozen or so free parameters
could reproduce the available star counts.

Bahcall & Soneira (1980) did not consider kinematic
data, but Caldwell & Ostriker (1981) updated the clas-
sical work on mass models by fitting largely kinematic
data to a mass model that comprised a series of compo-
nents like those seen in external galaxies. These data in-
cluded the Oort constants, the tangent-velocity curve, the
escape velocity at the Sun and the surface density of the
disc near the Sun.

Bienaymé, Robin & Crézé (1987) were the first to fit both
kinematic and star-count data to a model of the Galaxy
that was inspired by observations of external galaxies.
They broke the disc down into seven sub-populations
by age. Then they assumed that motion perpendicular
to the plane is perfectly decoupled from motion within
the plane, and further assumed that as regards verti-
cal motion, each sub-population is an isothermal com-
ponent, with the velocity dispersion determined by the
observationally determined age-velocity dispersion rela-
tion of disc stars. Each sub-population was assumed to
form a disc of given functional form, and the thickness
of the disc was determined from the approximate for-
mula ρ(R, z)/ρ(R, 0) = exp{[Φ(R, 0) − Φ(R, z)]/σ2},
where Φ is an estimate of the overall Galactic potential.
Once the thicknesses of the sub-discs have been deter-
mined, the mass of the bulge and the parameters of the
dark halo were adjusted to ensure continued satisfaction
of the constraints on the rotation curve vc(R). Then
the overall potential is recalculated, and the disc thick-
nesses were redetermined in the new potential. This cy-
cle was continued until changes between iterations were
small. The procedure was repeated several times, each
time with a different dark-matter disc arbitrarily super-
posed on the observed stellar discs. The geometry and
mass of this disc were fixed during the interations of the
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potential. Star counts were used to discriminate between
these dark-matter discs; it turned out that the best fit to
the star counts was obtained with negligible mass in the
dark-matter disc. Although in its essentials the current
‘Besano̧n model’ (Robin et al. 2003) is unchanged from
the original one, many refinements and extensions to it
have been made. In particular, the current model fits near
IR star counts and predicts proper motions and radial ve-
locities. It has a triaxial bulge and a warped, flaring disc.
Its big weakness is the assumption of constant veloc-
ity dispersions and streaming velocities in the bulge and
the stellar halo, and the neglect of the non-axisymmetric
component of the Galaxy’s gravitational field.

A consensus that ours is a barred galaxy formed in the
early 1990s (Blitz & Spergel 1991; Binney et al. 1991)
and models of the bulge/bar started to appear soon after.
Binney et al. (1997) and Freudenreich (1998) modelled
the luminosity density that is implied by the IR data from
the COBE mission, while Zhao (1996) and Häfner et al.
(2000) used extensions of Schwarzschild’s (1979) mod-
elling technique to produce dynamical models of the bar
that predicted proper motions in addition to being com-
patible with the COBE data. There was an urgent need for
such models to understand the data produced by searches
for microlensing events in fields near the Galactic cen-
tre. The interplay between these data and Galaxy models
makes rather a confusing story because it has proved hard
to estimate the errors on the optical depth to microlensing
in a given field.

The recent work of the Basel group (Bissantz & Gerhard
2002; Bissantz et al. 2003, 2004) and the microlensing
collaborations (Afonso et al. 2003; Popowski et al. 2004)
seems at last to have produced a reasonably coherent pic-
ture. Bissantz et al. (2003) fit a model to structures that
are seen in the (l, v) diagrams that one constructs from
spectral-line observations of HI and CO. The model is
based on hydrodynamical simulations of the flow of gas
in the gravitational potential of a density model that was
fitted to the COBE data (Bissantz & Gerhard 2002). They
show that structures observed in the (l, v) plane can be
reproduced if three conditions are fulfilled: (a) the pat-
tern speed of the bar is assigned a value that is consistent
with the one obtained by Dehnen (2000) from local stel-
lar kinematics; (b) there are four spiral arms (two weak,
two strong) and they rotate at a much lower pattern speed;
(c) virtually all the mass inside the Sun is assigned to the
stars rather than a dark halo.

Bissantz et al. (2004) go on to construct a stellar-
dynamical model that reproduces the luminosity density
inferred by Bissantz & Gerhard (2002). The model,
which has no free parameters, reproduces both (a) the
stellar kinematics in windows on the bulge, and (b) the
microlensing event timescale distribution determined by
the MACHO collaboration (Alcock et al. 2000). The
magnitude of the microlensing optical depth towards
bulge fields is still controversial, but the latest results
agree extremely well with the values predicted by Bis-
santz & Gerhard: in units of 10−6, the EROS collab-
oration report optical depth τ6 = 0.94±0.3 at (l, b) =
(2.5◦,−4◦) (Afonso et al. 2003) while Bissantz & Ger-
hard predicted τ6 = 1.2 at this location; the MA-
CHO collaboration report τ6 = 2.17+0.47

−0.38 at (l, b) =

( 1.5◦,−2.68◦) (Popowski et al. 2004), while Bissantz
& Gerhard predicted τ6 = 2.4 at this location.

Thus there is now a body of evidence to suggest that the
Galaxy’s mass is dominated by stars that can be traced by
IR light rather than by invisible objects such as WIMPS,
and that dynamical galaxy models can successfully in-
tegrate data from the entire spectrum of observational
probes of the Milky Way.

3. WHERE DO WE GO FROM HERE?

Since 1980 there has been a steady increase in the ex-
tent to which Galaxy models are dynamical. A model
must predict stellar velocities if it is to confront proper-
motion and radial velocity data, or predict microlensing
timescale distributions, and it needs to predict the time-
dependent, non-axisymmetric gravitational potential in
order to confront spectra-line data for HI and CO. Some
progress can be made by adopting characteristic velocity
dispersions for different stellar populations, but this is a
very poor expedient for several reasons. (a) Without a
dynamical model, we do not know how the orientation
of the velocity ellipsoid changes from place to place. (b)
It is not expected that any population will have Gaussian
velocity distributions, and a dynamical model is needed
to predict how the distributions depart from Gaussianity.
(c) An arbitrarily chosen set of velocity distributions at
different locations for a given component are guaranteed
to be dynamically inconsistent. Therefore it is impera-
tive that we move to fully dynamical galaxy models. The
question is simply, what technology is most promising in
this connection?

3.1. Schwarzschild Modelling

The market for models of external galaxies is cur-
rently dominated by models of the type pioneered by
Schwarzschild (1979). One guesses the galactic potential
and calculates a few thousand judiciously chosen orbits in
it, keeping a record of how each orbit contributes to the
observables, such as the space density, surface brightness,
mean-streaming velocity, or velocity dispersion at a grid
of points that covers the galaxy. Then one uses linear or
quadratic programming to find non-negative weights wi

for each orbit in the library such that the observations are
well fitted by a model in which a fraction wi of the total
mass is on the ith orbit.

Schwarzschild’s technique has been used to construct
spherical, axisymmetric and triaxial galaxy models that
fit a variety of observational constraints. Thus it is a tried-
and-tested technology of great flexibility.

It does have significant drawbacks, however. First the
choice of initial conditions from which to calculate or-
bits is at once important and obscure, especially when
the potential has a complex geometry, as the Galactic po-
tential has. Second, different investigators will choose
different initial conditions and therefore obtain different
orbits even when using the same potential. So there is no



91

straightforward way of comparing the distribution func-
tions of their models. Third, the method is computation-
ally very intensive because large numbers of phase-space
locations have to be stored for each orbit. Finally, predic-
tions of the model are subject to discreteness noise that
is larger than one might naively suppose because orbital
densities tend to be cusped (and formally singular) at their
edges and there is no natural procedure for smoothing out
these singularities.

3.2. Torus Modelling

In Oxford over a number of years we developed a tech-
nique in which orbits are not obtained as the time se-
quence that results from integration of the equations of
motion, but as images under a canonical map of an orbital
torus of the isochrone potential. Each orbit is specified by
its actions J and is represented by the coefficients Sn(J′)
that define the function S(J′, θ) = J

′ · θ +
∑

n
Snein·θ

that generates the map. Once the Sn have been deter-
mined, analytic expressions are available for x(θ) and
v(θ), so one can readily determine the velocity at which
the orbit would pass through any given location. Since
orbits are labelled by actions, which define a true map-
ping of phase space, it is straightforward to construct an
orbit library by systematically sampling phase space at
the nodes of a regular grid of actions J

′. Moreover, a
good approximation to an arbitrary orbit can be obtained
by interpolating the Sn(J′).

If the orbit library is generated by torus mapping, it
is easy to determine the distributon function from the
weights. When the orbit weights are normalized such that
∑

i wi = 1, and the distribution function is normalized
such that

∫

d3
xd3

v f = 1, then

f(J) =
1

(2π)3

∑

i

wiδ
(3)(J− Ji) (1)

If the action-space grid is regular with spacing ∆, we can
obtain an equivalent smoothed distribution function by
replacing δ(3)(J − Ji) by ∆−3 if J lies within a cube
of side ∆ centred on Ji, and zero otherwise. Different
modellers can easily compare their smoothed distribution
functions. Finally, with torus mapping many fewer num-
bers need to be stored for each orbit – just the Sn rather
than thousands of phase-space locations (x,v).

The drawbacks of torus mapping are these. First, it re-
quires complex special-purpose software, whereas orbit
integration is trivial. Second, it has to date only been
demonstrated for systems that have two degrees of free-
dom, such as an axisymmetric potential (McGill & Bin-
ney 1990), or a planar bar (Kaasalainen & Binney 1994b).
Finally, orbits are in a fictitious integrable Hamiltonian
(Kaasalainen & Binney 1994c) rather than in the, prob-
ably non-integrable, potential of interest. I return to this
point below.

3.3. Syer–Tremaine Modelling

In both the Schwarzschild and torus modelling strategies
one starts by calculating an orbit library, and the weights
of orbits are determined only after this step is complete.
Syer & Tremaine (1996) suggested an alternative strat-
egy, in which the weights are determined simultaneously
with the integration of the orbits. Combining these two
steps reduces the large overhead involved in storing large
numbers of phase-space coordinates for individual orbits.
Moreover, with the Syer–Tremaine technique the poten-
tial does not have to be fixed, but can be allowed to evolve
in time, for example through the usual self-consistency
condition of an N-body simulation.

To describe the Syer–Tremaine algorithm we need to de-
fine some notation. Let z ≡ (x,v) denote an arbitrary
point in phase space. Then each observable yα is defined
by a kernel Kα(z) through

yα =

∫

d6
z f(z)Kα(z) (2)

For example, if Yα is the density at some point xα, then
Kα(x,v) would be δ(3)(x − xα). In an orbit model we
take f to be of the form f(z) =

∑

i wiδ
(6)(z−zi) and the

integral in the last equation becomes a sum over orbits:

yα =
∑

i

wiKα(zi) (3)

If we simultaneously integrate a large number of orbits
in a common potential Φ (which might be the time-
dependent potential that is obtained by assigning each
particle a mass wiM ), then through Equation 3 each ob-
servable becomes a function of time. Let Yα be the re-
quired value of this observable, then Syer & Tremaine
adjust the value of the weight of the ith orbit at a rate

dwi

dt
= −wi

∑

α

Kα[zi(t)]

Zα

(

yα

Yα
− 1

)

(4)

Here the positive numbers Zα are chosen judiciously to
stress the importance of satisfying particular constraints,
and can be increased to slow the rate at which the weights
are adjusted. The numerator Kα[zi(t)] ensures that a dis-
crepancy between yα(t) and Yα impacts wi only in so far
as the orbit contributes to yα. The right side starts with a
minus sign to ensure that wi is decreased if yα > Yα and
the orbit tends to increase yα. Bissantz et al. (2004) have
recently demonstrated the value of the Syer & Tremaine
algorithm by using it to construct a dynamical model of
the inner Galaxy in the pre-determined potential of Bis-
santz & Gerhard (2002).

N-body simulations have been enormously important for
the development of our understanding of galactic dynam-
ics. To date they have been of rather limited use in mod-
elling specific galaxies, because the structure of an N-
body model has been determined in an obscure way by
the initial conditions from which it is started. In fact,
a major motivation for developing other modelling tech-
niques has been the requirement for initial conditions that
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will lead to N-body models that have a specified structure
(e.g., Kuijken & Dubinski 1995). Notwithstanding this
difficulty, Fux (1997) was able to find an N-body model
that qualitatively fits observations of the inner Galaxy. It
will be interesting to see whether the Syer–Tremaine al-
gorithm can be used to refine a model like that of Fux
until it matches all observational constraints.

4. HIERARCHICAL MODELLING

When trying to understand something that is complex,
it is best to proceed through a hierarchy of abstractions:
first we paint a broad-brush picture that ignores many de-
tails. Then we look at areas in which our first picture
clearly conflicts with reality, and understand the reasons
for this conflict. Armed with this understanding, we re-
fine our model to eliminate these conflicts. Then we turn
to the most important remaining areas of disagreement
between our model and reality, and so on. The process
terminates when we feel that we have nothing new or im-
portant to learn from residual mismatches between theory
and measurement.

This logic is nicely illustrated by the dynamics of the So-
lar System. We start from the model in which all planets
move on Kepler ellipses around the Sun. Then we con-
sider the effect on planets such as the Earth of Jupiter’s
gravitational field. To this point we have probably as-
sumed that all bodies lie in the ecliptic, and now we might
consider the non-zero inclinations of orbits. One by one
we introduce disturbances caused by the masses of the
other planets. Then we might introduce corrections to
the equations of motion from general relativity, followed
by consideration of effects that arise because planets and
moons are not point particles, but spinning non-spherical
bodies. As we proceed through this hierarchy of models,
our orbits will proceed from periodic, to quasi-periodic to
chaotic. Models that we ultimately reject as oversimpli-
fied will reveal structure that was previously unsuspected,
such as bands of unoccupied semi-major axes in the as-
teroid belt. The chaos that we will ultimately have to
confront will be understood in terms of resonances be-
tween the orbits we considered in the previous level of
abstraction.

The impact of Hipparcos on our understanding of the dy-
namics of the solar neighbourhood gives us a flavour of
the complexity we will have to confront in the Gaia cata-
logue. When the density of stars in the (U, V ) plane was
determined (Dehnen 1998; Fux 1997), it was found to be
remarkably lumpy, and the lumps contained old stars as
well as young, so they could not be just dissolving as-
sociations, as the classical interpretation of star streams
supposed. Now that the radial velocities of the Hippar-
cos survey stars are available, it has become clear that the
Hyades-Pleiades and Sirius moving groups are very het-
erogeous as regards age (Famaey et al. 2004). Evidently
these structures do not reflect the patchy nature of star
formation, but have a dynamical origin. They are proba-
bly generated by transient spiral structure (De Simone et
al. 2004), so they reflect departures of the Galaxy from
both axisymmetry and time-independence. Such struc-

tures will be most readily understood by perturbing a
steady-state, axisymmetric Galaxy model.

A model based on torus mapping is uniquely well suited
to such a study because its orbits are inherently quasi-
periodic structures with known angle-action coordinates.
Consequently, we have everything we need to use the
powerful techniques of canonical perturbation theory.

Figure 1. Using perturbation theory to model a resonant
family of orbits. Dots show consequents obtained by nu-
merical integration. The curves in the top panel show
resonant orbits obtained by applying perturbation theory
to orbits obtained by torus mapping. The curves in the
lower panel show three of these orbits, one through the
centre of the resonant region and one on each side. From
Kaasalainen (1994a).

Even in the absence of departures from axisymmetry or
time-variation in the potential, resonances between the
three characteristic frequencies of a quasi-periodic orbit
can deform the orbital structure from that encountered in
analytically integrable potentials. Important examples of
this phenomenon are encountered in the dynamics of tri-
axial elliptical galaxies, where resonant ‘boxlets’ almost
entirely replace box orbits when the potential is realisti-
cally cuspy (Merritt & Fridman 1996), and in the dynam-
ics of disc galaxies, where the 1:1 resonance between ra-
dial and vertical oscillations probably trapped significant
numbers of thick-disc stars as the mass of the thin disc
built up (Sridhar & Touma 1996). Kaasalainen (1995b)
has shown that such families of resonant orbits may be
very successfully modelled by applying perturbation the-



93

Figure 2. Obtaining resonant orbits by direct torus
mapping. The lower panel shows a surface of section
that is largely taken up by several powerful resonances.
Three non-resonant orbits obtained by torus mapping are
shown, one through the middle and one on each side of
the largest resonant family. The uper panel shows several
orbits of the resonant family that are obtained by directly
mapping isochrone orbits. Notice that the chaotic region
is nicely contained between two of these mapped orbits.
From Kaasalainen (1994a).

ory to orbits obtained by torus mapping. If the resonant
family is exceptionally large, one may prefer to obtain
its orbits directly by torus mapping (Kaasalainen 1995a)
rather than through perturbation theory. Figures 1 and
2 show examples of each approach to a resonant fam-
ily. Both figures show surfaces of section for motion in
a planar bar. In Figure 1 a relatively weak resonance is
successfuly handled through perturbation theory, while
in Figure 2 a more powerful resonance that induces sig-
nificant chaos is handled by directly mapping isochrone
orbits into the resonant region. These examples demon-
strate that if we obtain orbits by torus mapping, we will
be able to discover what the Galaxy would look like in
the absence of any particular resonant family or chaotic
region, so we will be able to ascribe particular features in
the data to particular resonances and chaotic zones. This
facility will make the modelling process more instructive
than it would be if we adopted a simple orbit-based tech-
nique.

5. CONFRONTING THE DATA

A dynamical model Galaxy will consist of a gravitational
potential Φ(x) together with distribution functions fα(J)
for each of several stellar populations. Each distribution
function may be represented by a set of orbital weights
wi, and the populations will consist of probability distri-
butions in mass m, metallicity Z and age τ that a star
picked from the population has the specified characteris-
tics. Thus a Galaxy model will contain an extremely large
number of parameters, and fitting these to the data will be
a formidable task.

Since so much of the Galaxy will be hidden from Gaia by
dust, interpretation of the Gaia catalogue will require a
knowledge of the three-dimensional distribution of dust.
Such a model can be developed by the classical method
of comparing measured colours with the intrinsic colours
of stars of known spectral type and distance. At large
distances from the Sun, even Gaia’s small parallax er-
rors will give rise to significantly uncertain distances, and
these uncertainties will be an important limitation on the
reliability of any dust model that one builds in this way.

Dynamical modelling offers the opportunity to refine our
dust model because Newton’s laws of motion enable us to
predict the luminosity density in obscured regions from
the densities and velocities that we see elsewhere, and
hence to detect obscuration without using colour data.
Moreover, they require that the luminosity distributions
of hot components are intrinsically smooth, so fluctua-
tions in the star counts of these populations at high spa-
tial frequencies must arise from small scale structure in
the obscuring dust. Therefore, we should solve for the
distribution of dust at the same time as we are solving for
the potential and the orbital weights.

In principle one would like to fit a Galaxy model to the
data by predicting from the model the probability density
P (α, . . . , v) of detecting a star at given values of the cat-
alogue variables, such as celestial coordinates α, parallax
$, and proper motons µ, and then evaluating the likeli-
hood L =

∏

i Pi, where the product runs over stars in the
catalogue and

Pi =

∫

d2α d$ d2µdv
e−(α−αi)

2/2σ2

α

2πσ2
α

× · · · ×
e−(v−vi)

2/2σ2

v

(2πσ2
v)1/2

P (α, . . . , v) (5)

with αi . . . vi the measured values and σα . . . σv the as-
sociated uncertainties. Unfortunately, it is likely to prove
difficult to obtain the required probability density P from
an orbit-based model, and we will be obliged to compare
the real catalogue to a pseudo-catalogue derived from the
current model. Moreover, standard optimization algo-
rithms are unlikely to find the global maximum in L with-
out significant astrophysical input from the modeller. In
any event, evaluating Pi for each of ∼ 109 observed stars
is a formidable computational problem. Devising effi-
cient ways of fitting models to the data clearly requires
much more thought.
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5.1. Adaptive Dynamics

Fine structure in the Galaxy’s phase space may provide
crucial assistance in fitting a model to the data. Two in-
evitable sources of fine structure are (a) resonances, and
(b) tidal streams. Resonances will sometimes be marked
by a sharp increase in the density of stars, as a conse-
quence of resonant trapping, while other resonances show
a deficit of stars. Suppose the data seem to require an en-
hanced density of stars at some point in action space and
you suspect that the enhancement is caused by a particu-
lar resonance. By virtue of errors in the adopted potential
Φ, the frequencies will not actually be in resonance at the
centre of the enhancement. By appropriate modification
of Φ it will be straightforward to bring the frequencies
into resonance. By reducing the errors in the estimated
actions of orbits, a successful update of Φ will probably
enhance the overdensity around the resonance. In fact,
one might use the visibility of density enhancements to
adjust Φ very much as the visibility of stellar images is
used with adaptive optics to configure the telescope op-
tics.

A tidal stream is a population of stars that are on very
similar orbits – the actions of the stars are narrowly dis-
tributed around the actions of the orbit on which the dwarf
galaxy or globular cluster was captured. Consequently, in
action space a tidal stream has higher contrast than it does
in real space, where the stars’ diverging angle variables
gradually spread the stars over the sky. Errors in Φ will
tend to disperse a tidal stream in action space, so again Φ
can be tuned by making the tidal stream as sharp a feature
as possible.

6. CONCLUSIONS

Dynamical Galaxy models have a central role to play
in attaining Gaia’s core goal of determining the struc-
ture and unravelling the history of the Milky Way. Even
though people have been building Galaxy models for over
half a century, we are still only beginning to construct
fully dynamical models, and we are very far from being
able to build multi-component dynamical models of the
type that the Gaia will require.

At least three potentially viable Galaxy-modelling tech-
nologies can be identified. One has been extensively
used to model external galaxies, one has the distinction
of having been used to build the currently leading Galaxy
model, while the third technology is the least developed
but potentially the most powerful. At this point we would
be wise to pursue all three technologies.

Once constructed, a model needs to be confronted with
the data. On account of the important roles in this con-
frontation that will be played by obscuration and paral-
lax errors, there is no doubt in my mind that we need to
project the models into the space of Gaia’s catalogue vari-
ables (α,$, . . .). This projection is simple in principle,
but will be computationally intensive in practice.

The third and final task is to change the model to make it

fit the data better. This task is going to be extremely hard,
and it is not clear at this point what strategy we should
adopt when addressing it. It seems possible that features
in the action-space density of stars associated with reso-
nances and tidal streams will help us to home in on the
correct potential.

There is much to do and it is time we started doing it if
we want to have a reasonably complete box of tools in
hand when the first data arrive in 2012–2013. The overall
task is almost certainly too large for a single institution
to complete on its own, and the final galaxy-modelling
machinery ought to be at the disposal of the wider com-
munity than the dynamics community since it will be
required to evaluate the observable implications of any
change in the characteristics or kinematics of stars or in-
terstellar matter throughout the Galaxy. Therefore, we
should approach the problem of building Galaxy models
as an aspect of infrastructure work for Gaia, rather than
mere science exploitation.

I hope that in the course of the next year interested parties
will enter into discussions about how we might divide up
the work, and define interface standards that will enable
the efforts of different groups to be combined in different
combinations. It is to be hoped that these discussions lead
before long to successful applications to funding bodies
for the resources that will be required to put the necessary
infrastructure in place by 2012.
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Häfner, R., Evans, N.W., Dehnen, W. & Binney, J., 2000,
MNRAS, 314, 433

Kaasalainen, M., 1994a, D.Phil thesis, Oxford University

Kaasalainen, M. & Binney, J., 1994b, MNRAS, 268,
1041

Kaasalainen, M. & Binney, J., 1994c, Phys.Rev.L., 73,
2377

Kaasalainen, M., 1995a, MNRAS, 275, 162

Kaasalainen, M., 1995b, Phys.Rev.E., 52, 1193

Kuijken, K. & Dubinski, J., 1995, MNRAS, 277, 1341

McGill, C. & Binney, J., 1990, MNRAS, 244, 634

Merritt, D. & Fridman, T. 1996, ApJ, 460, 136

Popowski P., Griest K., Thomas C., et al., 2004, ApJ,
(astro-ph/0410319)
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