The Cepheid period-luminosity relation from Gaia DR2 parallaxes

Gaia EDR3 Release Day - December 3rd 2020

1. Measuring distances in the Universe

Henrietta Leavitt (1908)

Henrietta Leavitt discovered that the brightest Cepheids have the longest periods !

$$M = a \log P + b$$

PL relation calibrated by Henrietta Leavitt (Leavitt & Pickering 1912)

1. Measuring distances in the Universe

Edwin Hubble and the 2.5m telescope at Mount Wilson Observatory

Relation between galaxies distance and velocity (Hubble 1929)

The tension on the Hubble constant (Javanmardi & Kervella 2019)

1. Measuring distances in the Universe

The distance scale (Credit: NASA, ESA, A. Feild (STScI), A. Riess (STScI/JHU))

2. Calibration of the PL relation with Gaia DR2 parallaxes

Gaia construction at ESA

2. Calibration of the PL relation with Gaia DR2 parallaxes

• We **<u>need very precise distances</u>** to calibrate the PL relation.

- Over the past 20 years, only the Hubble Space Telescope (HST) provided precise geometrical paxallaxes of Cepheids :
 - \rightarrow Freedman et al. (2001)
 - \rightarrow Sandage et al. (2006)
 - → Benedict et al. (2002, 2007)
 - → Riess et al. (2011, 2014, 2016, 2018, 2019)

• GAIA satellite : first alternative to HST parallaxes.

Hubble Space Telescope (NASA, ESA)

GAIA satellite (ESA)

Issue 1: The large uncertainty on the Gaia DR2 parallax zero-point (ZP_{GDR2}).

 \rightarrow large systematics in the results.

ZP _{GDR2}	Reference	Type of sources	Typical G
(mas)			(mag)
-0.029	Lindegren et al. (2018)	Quasars	19
$-0.031_{\pm 0.011}$	Graczyk et al. (2019)	Eclipsing binaries	9
$-0.0319_{\pm 0.0008}$	Arenou et al. (2018)	MW Cepheids	8
$-0.035_{\pm 0.016}$	Sahlholdt & Silva Aguirre (2018)	Dwarf stars	9
$-0.041_{\pm 0.010}$	Hall et al. (2019)	Red giants	13
$-0.046_{\pm 0.013}$	Riess et al. (2018b)	MW Cepheids	9
$-0.049_{\pm 0.018}$	Groenewegen (2018)	MW Cepheids (HST)	8
$-0.053_{\pm 0.003}$	Zinn et al. (2019)	Red giants	13
$-0.054_{\pm 0.006}$	Schönrich et al. (2019)	GDR2 RV	12
$-0.057_{\pm 0.003}$	Muraveva et al. (2018)	RR Lyrae	12
$-0.070_{\pm 0.010}$	Ripepi et al. (2019)	LMC Cepheids	15
$-0.082_{\pm 0.033}$	Stassun & Torres (2018)	Eclipsing binaries	9

Recent estimates of the Gaia DR2 parallax zero-point (Breuval et al. 2020)

We adopt $ZP_{GDR2} = -0.046 \pm 0.015$ mas

Issue 2: Gaia DR2 parallaxes are derived assuming that all the stars have a constant color and a constant brightness. (Lindegren et al. 2018, Mowlavi et al. 2018)

→ Without chromaticity correction, GDR2 parallaxes of Cepheids may be **potentially unreliable**.

Gaia Collaboration, Eyer L. et al. (2019)

2. Calibration of the PL relation with Gaia DR2 parallaxes

Gaia DR2 parallaxes of Cepheids are affected by **systematics** and may be **potentially unreliable**. \rightarrow We look for **stable** (non-variable) and **faint** stars in the close neighbourhood of Cepheids.

Cepheids with close companions

- Kervella et al. (2019b): 22 candidates.
- ▶ not variable, unsaturated (~6 mag fainter than Cepheids)
- not sensitive to flux contamination by the Cepheid
- resolved !

[∞] Proper motion of the Cepheid <u>CF Cas</u> and its host open cluster <u>NGC 7790</u> (Breuval et al. 2020)

Cepheids in open clusters

- cross-match between a catalog of open clusters (Cantat-Gaudin et al. 2018) and Milky Way Cepheids: 14 candidates.
- gain in precision by averaging over the cluster members
- members are not variable stars and are generally fainter than Cepheids

Proper motion of Delta Cep and its companion (Kervella et al. 2019b)

Period-Luminosity relation in the K_S band derived from Gaia DR2 parallaxes of companion stars and open clusters hosting Cepheids (Breuval et al. 2020)

3. Implications on the Hubble constant H₀

3. Implications on the Hubble constant H_0

Anchor(s)	Value (km s ^{-1} Mpc ^{-1})
One Anchor	
NGC 4258: Masers	72.25 ± 2.51
MW: 15 Cepheid Parallaxes	76.18 ± 2.37
LMC: 8 Late-type DEBs	72.04 ± 2.67
M31: 2 Early-type DEBs	74.50 ± 3.27
Two Anchors	
NGC 4258 + MW	74.04 ± 1.93
NGC $4258 + LMC$	71.62 ± 1.78
Three Anchors (Preferred)	
NGC 4258 + MW + LMC	$\textbf{73.24} \pm \textbf{1.74}$

Best estimates of H₀ from Riess et al. (2016), based on several anchors

3. Implications on the Hubble constant H₀

Riess et al. (2016)

15 parallaxes of Milky Way Cepheids HST/FGS, HST/WFC3, *Hipparcos*

*

 $H_{0, R16} = 76.18 \pm 2.37 \text{ km/s/Mpc}$

Breuval et al. (2020)

22 parallaxes of Cepheids companions 14 parallaxes of open clusters hosting Cepheids Gaia DR2

Rescale of the Milky Way Hubble constant: $H_{0, B20} = (\pi_{B20} / \pi_{R16}) H_{0, R16}$

 $H_{0, B20} = 72.76 \pm 1.86$ (statistics, systematics) ± 1.89 (ZP) km/s/Mpc

 \rightarrow Still large errors because of the uncertainty on the Gaia DR2 parallax zero-point.

 \rightarrow New value in better agreement with the other anchors from R16

NGC 4258: Masers	72.25 ± 2.51
MW: 34 Gaia DR2 parallaxes (Breuval+ 2020)	72.76 ± 2.65
LMC: 8 Late-type DEBs	72.04 ± 2.67
M31: 2 Early-type DEBs	74.50 ± 3.27

Conclusion

- Using Gaia DR2 parallaxes of **companions** and **open clusters** instead of Cepheids parallaxes allows us to :
 - → bypass the systematics on GDR2 Cepheids parallaxes
 - \rightarrow calibrate the PL relation with non-HST parallaxes
- We revise the Milky Way value of the Hubble constant by using our sample of Gaia DR2 parallaxes instead of previous non-Gaia parallaxes (mostly HST). From an initial value of <u>76.18</u> km/s/Mpc (Riess et al. 2016), we obtain <u>72.8</u> km/s/Mpc.
- We need to investigate the metallicity effect on PL relations !
- We expect the Gaia DR3 to :
 - \rightarrow provide a precise (and smaller) value of the parallax zero-point
 - → provide more accurate parallaxes for Cepheids (but still no chromaticity corrections)

