Les compagnons stellaires et sous-stellaires à l'aide des mouvement propres Gaia

Pierre Kervella, Frédéric Arenou, François Mignard, Frédéric Thévenin et al.

Image: NASA, ESA and G. Bacon (STScI)

Laboratoire d'Études Spatiales et d'Instrumentation en Astrophysique

Principe

La détection des compagnons des étoiles peut se faire de deux manières en utilisant les mouvements propres Gaia:

1. Détection d'une anomalie de mouvement propre et les mouvements propres mesurés par Gaia

Principe

La détection des compagnons des étoiles peut se faire de deux manières en utilisant les mouvements propres Gaia:

entre le mouvement à long terme entre Hipparcos-Gaia

Laboratoire d'Études Spatiales et d'Instrumentation en Astrophysique

Principe

La détection des compagnons des étoiles peut se faire de deux manières en utilisant les mouvements propres Gaia:

- 1. Détection d'une anomalie de mouvement propre et les mouvements propres mesurés par Gaia
- propre communs

entre le mouvement à long terme entre Hipparcos-Gaia

2. Les objets présentant une parallaxe et un mouvement

Etoile simple

Hipparcos

Gaia DR2

Etoile simple

Hipparcos

UH

Gaia DR2

UG²

UHG

Etoile simple

Hipparcos

UH

Gaia DR2

UG²

Etoile et compagnon

Hipparcos

G

Gaia DR2

G

L'anomalie de mouvement propre UG2 G UH G **Hipparcos** Gaia DR2

Etoile et compagnon

L'anomalie de mouvement propre UG2 G UHG G JH **Hipparcos** Gaia DR2

Etoile et compagnon

Etoile et compagnon

 $\Delta \mu H = \mu H - \mu HG$

Hipparcos

Ģ

UH

Proxima

$\mu_{\rm HG} = 3859.110 \pm 0.069 \,\rm mas \,a^{-1}$

 $\Delta v_{tan,G2} = 2.7 \pm 1.5 \,\mathrm{m\,s^{-1}}$

Proxima

Une seconde planète pour Proxima?

Proxima

6 4 2 -2 -2 -4 -6 -0

Proxima b

Damasso et al. 2020, Science Advances, 6, 3

Une seconde planète pour Proxima ?

Proxima

6 -4 -2 -[s/w] 2 --2 --4 --6 -0.0

Proxima b

Proxima c

Damasso et al. 2020, Science Advances, 6, 3

Gaia DR2 permet d'estimer la masse de Proxima C: 7 à 17 M_{Terre}

Et même sa **position** sur le ciel !

Les mesures Gaia EDR3 permettront de préciser ces résultats

Kervella et al. 2019, A&A, 623, A72 Snellen & Brown 2018, Nat. Astronomy, 2, 883

Et beaucoup d'autres travaux !

Determining the true mass of radial-velocity exoplanets with Gaia

9 planet candidates in the brown-dwarf/stellar regime and 27 confirmed planets

F. Kiefer^{1,2}, G. Hébrard^{1,3}, A. Lecavelier des Etangs¹, E. Martioli^{1,4}, S. Dalal¹, and A. Vidal-Madjar¹

¹ Institut d'Astrophysique de Paris, Sorbonne Université, CNRS, UMR 7095, 98 bis bd Arago, 75014 Paris, France

² LESIA, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, Université de Paris, 5 place Jules Janssen, 9 Meudon, France*

³ Observatoire de Haute-Provence, CNRS, Universiteé d'Aix-Marseille, 04870 Saint-Michel-l'Observatoire, France

⁴ Laboratório Nacional de Astrofísica, Rua Estados Unidos 154, 37504-364, Itajubá - MG, Brazil

Submitted on 2020/08/20 ; Accepted for publication on 2020/09/24

Kiefer et al. 2020, arXiv :2009.14164

SCExAO/CHARIS Direct Imaging Discovery of a 20 au Separation, Low-Mass Ratio Brown Dwarf Companion to an Accelerating Sun-like Star*

THAYNE CURRIE,^{1, 2, 3} TIMOTHY D. BRANDT,⁴ MASAYUKI KUZUHARA,^{5, 6} JEFFREY CHILCOTE,⁷ OLIVIER GUYON,^{1, 5, 8, 9} CHRISTIAN MAROIS,^{10,11} TYLER D. GROFF,¹² JULIEN LOZI,¹ SEBASTIEN VIEVARD,¹ ANANYA SAHOO,¹ VINCENT DEO,¹ NEMANJA JOVANOVIC,¹³ FRANTZ MARTINACHE,¹⁴ KEVIN WAGNER,^{8,15} TRENT DUPUY,¹⁶ MATTHEW WAHL,¹ MICHAEL LETAWSKY,¹ YITING LI,⁴ YUNLIN ZENG,¹⁷ G. MIREK BRANDT,⁴ DANIEL MICHALIK,¹⁸ CAROL GRADY,³ MARKUS JANSON,¹⁹ GILLIAN R. KNAPP,²⁰ JUNGMI KWON,²¹ KELLEN LAWSON,²² MICHAEL W. MCELWAIN,¹² TAICHI UYAMA,²³ JOHN WISNIEWSKI,²² AND MOTOHIDE TAMURA^{5, 6, 24}

Currie et al. 2020, arXiv: 2011.08855

A Model-independent Mass and Moderate Eccentricity for β Pic b

Trent J. Dupuy¹, Timothy D. Brandt², Kaitlin M. Kratter³, and Brendan P. Bowler⁴ ² Department of Physics, University of California, Santa Barbara, Santa Barbara, CA 93106, USA ³ Department of Astronomy and Steward Observatory, University of Arizona, Tucson, AZ 85721, USA ⁴ The University of Texas at Austin, Department of Astronomy, 2515 Speedway C1400, Austin, TX 78712, USA

Received 2018 November 20; revised 2018 December 27; accepted 2018 December 29; published 2019 January 18

Dupuy et al. 2019, ApJL, 871:4

A Dynamical Mass of $70 \pm 5M_{Jup}$ for Gliese 229B, the First T Dwarf

Timothy D. Brandt¹⁽ⁱ⁾, Trent J. Dupuy^{2,3}⁽ⁱ⁾, Brendan P. Bowler⁴⁽ⁱ⁾, Daniella C. Bardalez Gagliuffi⁵⁽ⁱ⁾, Jacqueline Faherty⁶⁽ⁱ⁾,

G. Mirek Brandt¹⁽¹⁾, and Daniel Michalik⁶

¹ Department of Physics, University of California, Santa Barbara, Santa Barbara, CA 93106, USA

² Gemini Observatory, Northern Operations Center, 670 N. Aohoku Place, Hilo, HI 96720, USA

³ Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh, EH9 3HJ, UK

Department of Astronomy, The University of Texas at Austin, Austin, TX 78712, USA

⁵ American Museum of Natural History, NY, USA

⁶ Science Support Office, Directorate of Science, European Space Research and Technology Centre (ESA/ESTEC), Keplerlaan 1, 2201 AZ Noordwijk, The

Netherlands

Received 2019 October 3; revised 2020 July 19; accepted 2020 August 13; published 2020 October 6

Brandt et al. 2020, AJ, 160:196

Compagnons de mouvement propre

Compagnons de Céphéides

Dec (J2000)

Laboratoire d'Études Spatiales et d'Instrumentation en Astrophysique

• 30% des 6500 étoiles du catalogue Hipparcos à moins de 50 parsecs présentent une anomalie de mouvement propre à plus de 3 σ

• Un grand nombre de signatures de compagnons de faible masse, y compris de masses planetaires (Proxima, & Pic...) et autour de naines blanches

 Plus de 80% des Céphéides sont dans des systèmes multiples, et environ 20% des étoiles RR Lyrae

 La précision de mesure de l'anomalie de vitesse tangentielle avec la DR2 est de Δv_{tan}~1 m/s/pc. Le catalogue EDR3 permettra d'aller encore plus loin en précision et sensibilité !

Conclusion

