De Gaia DR2 à EDR3

Frédéric Arenou CNRS / Gepi, Observatoire de Paris, PSL

(USING THE DPAC SLIDESHOW)

3 décembre 2020 • Publication du 3^{ème} catalogue Gaia, première partie (EDR3)

Gaia mission

- Mission status
 - Operations continue with minimal impact on science
 - Up to now, more than 160 billion object detections :
 - More than 1,600 billion astrometric CCD measurements
 - More than 320 billion spectrophotometric CCD measurements
 - More than 31 billion CCD spectra for radial velocities
- Mission extension
 - Gaia nominal 5 year mission was completed summer 2019
 - Gaia expected to continue observing until early 2025
 - End of mission due to end of consumables for micropropulsion
 - Would represent 10 years of Gaia data
 - Gaia extension funding formally approved until the end of 2022
 - indicatively until the end of the satellite operations in 2025

Gaia EDR3

- In April 2018, Gaia DR2 has represented a major breakthrough
 - More than 3 800 papers quote Gaia results
- The DR3 release will publish for the first time most of Gaia "products"
 - Which represents a serious challenge, planned for 2022
 - With astrometry and photometry yet ready early 2020
 - For the community, publishing this data was deemed useful
- EDR3 represents an observing time of 34 months vs 22 for DR2, 14 for DR1
 - Astrometric precision scales as $t^{-0.5}$ for parallaxes and $t^{-1.5}$ for p.m.
 - Time also allows better instrument calibrations

Parallax precision

Proper motion precision

Completeness in magnitude

Fraction of solution types

Large scale systematics

Systematics as mapped through quasar parallaxes and proper motions

Global parallax zero point: -17 μas
RMS angular variations: 26 μas and 33 μas/yr

Other notable changes DR2 to EDR3

Gaia

- Photometric system changed
 - Passbands
 - Zero points
- **Completeness in crowded** regions improved
- Lower limit on source separations is now 0.18 arcsec
- Source list improved
 - 4% of source id changed
 - Improved large p.m.

Astrometry: spurious solutions

Spurious parallaxes and proper motions still present

- Due to half-resolved sources not (yet) handled
- Much less frequent than in Gaia DR2
- Spurious solutions produce smaller errors on astrometry
- For solutions with S/N>5 :~1.6% \rightarrow 10% at G=20 for 6p

Gaia Astrometry: zero-point systematics 50 Gaia **DRR**3 -6440 0.03 parallax -6530 0.1°) parallax [μ as] corrected parallax parallax difference (prim - sec) -660.02 20 -6710 0.01 -680 Ш -690.00 -10 = -20 = -30 = -30 = -70-0.01-71-0.02 -72 11 12 13 14 15 -40primary G mag -73 -5075 70 95 90 85 80 65 60

Parallax zero-point variations still present (significantly supressed)

- Tentative ad-hoc recipe is proposed to correct for the variations
- Python code at <u>https://gitlab.com/icc-ub/public/gaiadr3_zeropoint</u>
- Proper motions also show systematics and angular correlations

Photometric precision

ESA/Gaia/DPAC

Gaia

JPA

Photometry: flux excess factor

- A colour-independent form of flux excess factor
 - Formulae and ADQL/Python recipes available
- Flux excess can indicate issues with crowding or background subtraction
 - but also contains astrophysical information

Photometry: limitations

- At faint end BP flux overestimated
 - Sources appear too blue
- Use (G-G_{RP}) instead to study faint red sources

1.5 1.40 1.38 1.4 1.36 1.34 1.3 1.32 1.30 - GRP 1.2 1.28 ف 1.26 1.24 1.22 1.20 1.0 1.18 1.16 0.9 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 1.8 1.9 2.0 GRP-G

G-band photometry for sources with 6parameter astrometry should be corrected

• Formulae and ADQL/Python recipes available

Useful tips

Question	Тір
Find a DR2 source	Use dedicated neighbourhood table
Isolated source?	Check image parameter statistics, in particular RUWE < 1.4
Parallax zero point	Consider applying the correction by Lindegren et al.
Spurious solutions	If selecting only positive parallaxes, make a similar selection with negative parallaxes for comparison + use ipd flags
Missing G mag	Alternative G photometry is available
G magnitude	A small correction should be added for 6p solutions
G _{BP} or G _{RP} mag.	Strong bias for $G_{BP} > 20.5$, strong bias for $G_{RP} > 20$
Colour	Use G-G _{RP} instead of G_{BP} -G _{RP} when faint red sources are included
Calibration issues ?	RUWE < 1.4 + significant excess noise

• In case of trouble, don't hesitate to ask...

Useful resources

- Several documentation papers and 4 science demonstration papers
- Several X-match available with main catalogues
 - Hipparcos-2, Tycho-2 + TDSC, 2MASS) PSC , SDSS DR13, Pan-STARRS1 DR1, SkyMapper DR1, GSC 2.3, APASS DR9, RAVE DR5, allWISE, and URAT-1
 - a Gaia DR2 to Gaia EDR3 match table : dr2_neighbourhood
- Useful links
 - Main ESA link: <u>https://www.cosmos.esa.int/web/gaia/earlydr3</u>
 - Table descriptions:

https://www.cosmos.esa.int/documents/29201/1645651/DraftDataModel-EDR3.pdf

- Photometric passbands: <u>https://www.cosmos.esa.int/web/gaia/edr3-passbands</u>
- Transformation between main photometric systems in Riello et al.
- Transit times https://www.cosmos.esa.int/web/gaia/scanning-law-pointings
- Various Python codes : <u>https://www.cosmos.esa.int/web/gaia/edr3-code</u>
- ESA Database access : <u>https://gea.esac.esa.int/archive/</u>
- Database access from within ObsPM soon : <u>https://gaia.obspm.fr/tap-server/tap</u>

CEPHEIDS AND RR LYRAE AS STANDARD CANDLES FROM HIPPARCOS TO DR1 TO DR2 TO GAIA EDR3

CEPHEIDS

RR LYRAE

