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ABSTRACT

Two-dimensional spectral types for each of the stars ob-
served in the GAIA mission would provide valuable addi-
tional information for galactic structure and stellar evo-
lution studies, as well as aiding in the identification of
unusual objects and populations. Classification of the
enormous number of spectra needed for such a project
makes automated techniques an absolute necessity. We
present a brief survey of approaches to automatic classi-
fication, then discuss our Metric-Distance method, which
in developmental tests produces spectral types with mean
errors comparable to those of human classifiers working
at similar resolution. We discuss data and equipment
requirements for an automated classification survey. Fi-
nally, we propose a program of auxilliary observations to
yield spectral types and radial velocities for the GAIA
stars.
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1. INTRODUCTION

The spectral class of a star is a fundamental classical
datum in stellar astronomy. The two-dimensional MK
spectral type can provide provide information about the
temperature and surface gravity of a star, through in-
terpretation in light of theoretical models of stellar at-
mospheres. But spectral types are not classifications by
temperature and gravity; they are descriptions of the
visual appearance of the spectra. This is one of the
most important characteristics of the MK spectral types
and the MK process in general. The spectral types are
model-independent; theoretical advances may change the
temperature and surface gravity associated with spectral
type A0V, but a star of type A0V will still be an AQOV.

Moreover, from the very earliest era of spectral classifica-
tion, the types have been based on the overall appearance
of the spectra, and not on continuum shape, particular
line strengths, or particular ratios of lines. The centrality
of the model-independence and emphasis of total appear-
ance has been emphasized by authors from Payne (1925)
through Morgan (1984).

Standard MK classification involves comparing spectra to
be classified with standard spectra of defined class. Ideal
classification spectra have dispersions of about 67 A /mm
and cover a spectral range of approximately 3850-5000A.

Satisfactory classification is actually possible with spec-
tra of about half that dispersion, e.g., the 112 A/mm
spectra used by Houk (Houk & Cowley 1975; Houk 1978,
1982). The minimum spectral resolution for reliable MK
classification is about 1 A.

One might ask ‘“Why do spectral classification at all?
Can’t we get the same information from multicolor pho-
tometry and even more information from high-resolution
spectroscopy?’ First of all, the MK process is a very pow-
erful technique for using all the information in a stellar
spectrum and integrating it with a unique perspective,
which complements all of the other techniques. Other
techniques give valuable, but different, information (see
also Favata & Perryman 1995, Bastian 1995, for related
complementary information being considered in the con-
text of GAIA). For example, broad-band photometry
looks at the deep photosphere, whereas the line spec-
trum is taken from several levels above the photosphere
depending on the strength of the line and the part of the
profile used. Similarly, classification has one big advan-
tage when compared with quantitative, high-resolution
spectroscopy. The problem of determination of the con-
tinuum and of equivalent widths is circumvented by the
use of standard stars, so it is a very useful complemen-
tary check on equivalent-width methodology, as well as
a useful source of new information not available in the
quantitative techniques. Thus these various techniques
are complementary rather than competitive.

2. AUTOMATIC CLASSIFICATION

It is clear that for the huge number of objects to be ob-
served in the GATA program, or any similar large-scale
survey of fainter stars, that methods of automatic classi-
fication are the only feasible means of assigning spectral
types. The desirability of a fully automated system of
spectral classification has been stressed by many authors
over the past two and a half decades (see, e.g. West 1973,
1976; Schmidt-Kaler 1979, 1982; Kurtz 1984; Houk 1976,
1984, 1994; Keenan 1987; and Garrison 1988). In addi-
tion to increasing the speed of the classification process,
automated systems offer the prospect of greater durabil-
ity and homogeneity: the ability to classify large numbers
of stars on a self-consistent system. Large homogeneous
samples are especially important for statistical studies,
and are virtually unobtainable by traditional classifica-
tion methods.



Table 1: Recent results in automated spectral classification

Source Dispersion Technique Mean Error
(Resolution) (Subtypes)
Kurtz (1982) (14 A) Pattern Recognition 1.9
LaSala (1989) 112 A/mm  Pattern Recognition 2.2
Kurtz & LaSala (1991) 112 A/mm  Pattern Recognition 1.14
von Hipple et al. (1994) 112 A/mm Neural Net 1.7
Malyuto & Shvelidze (1994) 166 A/mm Quantitative 0.1
LaSala (1994) 67 A/mm  Pattern Recognition 0.4
Weaver & Torres-Dodgen (1995) (15 A4) Neural Net 0.5

Other expected benefits of automated classification in-
clude the detection of variability, the possibility of clas-
sification in more than two dimensions, and the rapid
detection of peculiar objects. Many consider this last
the most important and promising contribution of auto-
matic spectral classification and indeed of spectral clas-
sification in general: the classification process acts as a
filter which allows one to select and study in great detail
only the most interesting objects, or a few normal objects
which are representative of a much larger group.

Various attempts to develop an automated system of
spectral classification have been made over the past 25
years. Several developments within the past few years
have finally converged to make a large-scale automatic
classification program both necessary and feasible. The
availability of high-speed, low noise plate scanners and,
more recently, multi-object fiber-fed CCD spectrographs,
has increased the rate of acquisition of spectral data far
beyond the ability of human classifiers while providing
data in ideal form for computerized analysis and classifi-
cation. Simultaneously, increasingly fast and inexpensive
computers and developments in the fields of image pro-
cessing and pattern recognition have provided the mech-
anisms for a working automated classifier.

Reviews of previous work are given by West, Schmidt-
Kaler, and Kurtz in the papers cited above, as well as
by von Hipple et al.(1994). With these authors, we may
divide techniques applied to automatic spectral classifica-
tion into two categories which may be called quantitative
methods and pattern recognition respectively. Quantita-
tive methods involve the measurement of specified spec-
tral quantities (equivalent widths of certain spectral lines,
ratios of certain line strengths, etc.) and calibration of
these measurements in terms of desired parameters such
as spectral type and luminosity class.

Pattern recognition methods effect classification by de-
termining a suitably defined similarity measure and as-
signing a given spectrum to the class whose standard
the spectrum most closely resembles. Pattern recogni-
tion techniques involve direct comparison with standard
spectra, while criterion evaluation methods do not; in
this respect pattern recognition more closely resembles
the process of visual classification. In addition, pattern
recognition methods avoid the pitfalls of making absolute
measurements of equivalent widths. Because of its closer
correspondence with the visual classification technique,
its use of the overall appearance of the spectrum, and
its avoidance of model-dependent calibration, we believe
strongly that pattern recognition is the approach which
will ultimately yield the most powerful and most useful

automated classification techniques.

There are two pattern-recognition approaches currently
used by those developing automated spectral classifi-
cation methods. These are Artificial Neural Networks
(ANN) and Weighted Metric Distance algorithms. ANNs
are a widely-used non-linear system based on a simple
model of human neurons. The next speaker (Lahav 1995)
will discuss ANNSs in detail; in addition an excellent dis-
cussion of the application of ANNs to spectral classifica-
tion may be found in Weaver and Torres-Dodgen (1995).
The Metric Distance methods will be discussed exten-
sively below. Both ANNs and Weighted Metric Distance
methods base their classifications on weighted parame-
ters determined from a learing set of classified spectra.
We believe that the Metric Distance techniques are supe-
rior in that there are no ‘hidden layers’ involving compli-
cated and often difficult to interpret relationships among
the classification parameters. In addition, the Metric
Distance methods allow direct comparison with standard
spectra at the classification step, as in the traditional MK

Process; ANNs do not.

Table 1 summarizes the most significant recent results
in automatic classification. For comparison, mean errors
for visual classification by trained classifiers range from
about 1.0-1.3 subtypes (Houk & Cowley 1973) to as little
as 0.44-0.63 subtypes (Houk 1978) for the top experts.

3. THE METRIC-DISTANCE ALGORITHM

Each digitized spectrum is regarded as an n-element vec-
tor, where n is the number of resolution elements or pix-
els. The standard spectra S represent fixed points in
this space. The metric distance d;s between a program
spectrum X and a standard S is given by:

d2, = %ioﬂ(i)[xi s (1)
i=1

where a is a weighting factor to be defined. If a(z) is set
to 1, we have the ordinary Euclidean metric; Penprase
(1993) uses a step function: o = 1 at selected features,
a = 0 elsewhere.

Kurtz (1984) proposed defining:
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where zz(z) is the variance of pixel ¢ within the error
box associated with some initial approximation, e.g. ‘G’,



and 0'2(1') is the variance of the same pixel within the
final classification box, e.g. ‘G2’. This defintion gives
the most weight to those features which have the small-
est variance within the final classification box and larger
variance among boxes. Thus it weights most strongly
those features which discriminate the final classification
from the general mix of spectra. We have adopted and
continue to use this metric in our work.

4. RECTIFICATION

An important point to consider in any automated classifi-
cation program is the question of eliminating the contin-
uum and instrumental response. In a typical spectrum,
the continuum and instrumental response represent first-
order information, and the spectral lines second order in-
formation. MK classification is based on small differences
in the strength and profiles of the lines, which is third-
order information. For this reason, any residual errors in
continuum removal will influence classification programs
as much as or more than the third-order information on
which classifications are to be based. In particular, since
the continuum shape is known to be strongly correlated
with the classification results (this is, after all, the basis
of photometric classification), improper removal of this
first-order information will bias the results toward the
photometric classifications.

Figure 1. Top: B3V spectrum. Middle: B7II spectrum.
Bottom: difference between top and middle spectra. All
spectra have been ‘reflattened’ as described in text.

We have tested a number of continuum removal tech-
niques and currently prefer a multi-step process we call
‘re-flattening’. We begin by applying the Fourier division
technique (LaSala & Kurtz 1985) to produce a rectified
spectrum. Then a Fourier-smoothed residual spectrum is
calculated and subtracted from the rectified spectrum to
produce the reflattened spectrum. In addition, anytime
we calculate a difference between spectra, we reflatten
the difference spectrum to remove any third-order con-
tinuum effects. As Fig. 1, from Kurtz & LaSala (1991),
shows, the results are quite good.

5. AN OPPORTUNITY, AND A BURDEN

It is critically important to realize that a project of the
scope being proposed, classification of approximately 50

million spectra of the stars observed by GAIA, will es-
sentially define the spectral classification system of the
future, as surely as Annie Cannon defined the Harvard
types through classifying the 240 000 spectra of the Henry
Draper Catalog. To insure that the new system thus de-
fined is compatible with the existing body of MK classi-
fications, extensive coordination with expert visual clas-
sifiers will be necessary, especially in the early stages of
the program.

Some have suggested that we not worry about this, and
simply define our new system without reference to the
old, perhaps based on comparison with model stellar
spectra. Such an approach is unwise, in that it dis-
cards both the existing body of classification research
and methodology, and the model-independence which is
an important virtue of the traditional methods.

Perhaps the spectra can be allowed to ‘classify them-
selves’ into natural groupings which may or may not cor-
respond to the traditional MK types; this can be done
using ANNs, Metric Distance algorithms, or other sta-
tistical methods. This is probably a good idea, but it
must be done after, or in tandem with, a more tradi-
tional MK-anchored classification. Otherwise interpreta-
tion and analysis of the new classifications, and relating
this new information to the existing body of knowledge,
will be difficult or impossible.

6. INSTRUMENTATION

In the past, slitless spectrographs such as objective-prism
telescopes were the principal source of spectra in such
large volume that automatic classification methods would
be of value. Today, the advent of multi-object fiber-optic
spectrographs makes possible the high-speed acquisition
of huge numbers of slit spectra.

For example, the ‘Hectospec’ spectrograph (Fabricant
et al. 1994), currently being built for the soon-to-be-
reconfigured Multiple Mirror Telescope, can observe 300
spectra simultaneously, and the fibers can be automat-
ically repositioned for a new observation in 5 minutes.
It seems quite feasible to build a similar device with
1000 fibers, capable of observing 1000 spectra simulta-
neously. A spectrograph of this design eliminates the
source confusion (spectrum overlap) problems that arise
with slitless spectra, since the position of the spectrum
on the detector is fixed by the position of the output end
of the optical fiber, not by the position of the star in the
field. Coupled with a telescope of suitable aperature and
wide field, such a spectrograph could obtain the 50 mil-
lion spectra needed to complement the GAIA mission in
a period of three years.

7. A MODEST PROPOSAL

We propose that auxilliary spectroscopy for the GAIA
mission by performed not by a satellite-mounted tele-
scope in tandem with GAIA, but by a dedicated earth-
based facility.

A telescope of 4-m aperture, with a wide field of view,
coupled with a 1000 fiber spectrograph of capability com-
parable to the Hectospec, would allow observation of
stars down to 15 mag at a rate limited primarily by the
repositioning time for the fibers. If used with a 1200
lines/mm grating, such a spectrograph would provide a



dispersion of about 0.3 A/pixel over a spectral range of
about 1000 A. This is ideal for automated MK classifica-
tion and would also allow radial velocity determination at
a precision of 1 km/s. Indeed, such a high-stability spec-
trograph, with a signal-to-noise ratio appraoching 1000
for a 5-minute exposure of a 15 mag star, will allow ra-
dial velocity determinations of precision previously ob-
tainable only with coude or echelle instruments.

The advantages of such an Earth-based program are
many. All required instruments represent applications
and extensions of existing technology. No special teleme-
try or new data reduction techniques are required. Source
confuision is not an issue with a fiber-optic spectroscope.
Construction costs are probably less than the develop-
ment, construction, and increased launch costs associated
with a space-based telescope. After the three years re-
quired to make the complete set of observations, repeat
observations may be made to detect variability. And after
the GAIA mission is over you still have a fully operational
observatory with a first-class spectrograph.

8. THE PROMISE

As Hipparcos brought astrometry into the modern age,
GAIA, coupled with the proposed auxilliary observa-
tions, can bring the study of stellar kinematics and pop-
ulations into the new century.
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