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ABSTRACT

The Fizeau interferometer proposed in the GAIA concept
adds fine structures or fringes to the diffraction pattern
of a single aperture, thus improving the precision in the
position measurement of the drifting pattern. As direct
fringe detection is by far most favoured, we investigate the
precision in terms of baseline and sampling frequency, the
noise source being photon noise only. The detector, sup-
posed to be a CCD camera, operates in the time delayed
integration mode. Considering only the filtering effect
due to the finite width of a pixel, an optimum baseline
is obtained with two samples per fringe period. In such
a case the undersampling can be corrected exactly if two
neighbouring cells are driven with a clock offset of half
a sample. Two linear combinations of these measure-
ments will give an unbiased estimate for the position of
the diffraction pattern, without any loss of information.
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1. INTRODUCTION

The GAIA concept is based on three telescopes observing
at wide angles. Each of the telescopes has two distinct
entrance pupils and operates as a Fizeau stellar inter-
ferometer. Due to the interference fringes in the image
plane, each interferometer is expected to have high pre-
cision in the position measurements of star images along
the scanning direction. The field of view of such an in-
terferometer being as large as the aberration-free field of
view of the telescope, the Fizeau interferometer appears
to be ideally suited for mapping the sky from a spinning
spacecraft.

As for any astrometric measurement, high stability and
accuracy of the telescope and detection system are re-
quired. Direct fringe detection in the focal plane would
be favoured due to its greater simplicity and efficiency,
but seemed to be unrealistic with the parameters choosen
in the GAIA baseline definition study (Lindegren & Per-
ryman 1994). Indeed, the image scale in the focal plane
and the fringe period must ‘fit’ the pixel width in the
scanning direction.

The purpose of the detector is to record the necessary
information for accurate position measurements, that is
without bias, and with the largest Signal/Noise ratio.
The noise source will be photon noise only, neglecting
read-out noise. What fit will mean for a CCD detector

operating in the time delayed integration mode is the sub-
ject of this paper.

In a first section we evaluate the precision in terms of
baseline for an ideal detector, that is with an infinitely
small width. In a second section, we evaluate the opti-
mum baseline or fringe frequency for a finite pixel width.
At this optimum frequency, the fringe pattern is under-
sampled and we show how to recover its position without
bias, and without loss in the signal-to-noise ratio.

2. FIZEAU STELLAR INTERFEROMETER WITH
AN IDEAL DETECTOR

The maximum precision that can be achieved in the lo-
cation of a star image is evaluated with the help of the
optimum weighting function (Lindegren 1978). The prob-
lem is a one dimensional problem, along the path of the
image, and an ideal photon counting detector is supposed
to be used in the focal plane of the Fizeau interferometer.

Let v be the angular coordinate along this path in the
instrument frame. At any time ¢, the observed interfero-
gram is gg (U — ’UO) with vg = wot, wg being the scanning
speed of the spacecraft.

Let u = v — vg the angular coordinate along the base-
line projection in the moving stellar frame. The optimum
weighting function for the location of a pattern with pho-
ton noise only is:

and the precision in the location, taken as the inverse of

the variance is:
2
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The expression for the interferogram go(z) with two iden-
tical apertures will be:

go(u) = fo(u)[1 + cos(2mbu)] (2)

where b = B/D is the baseline normalised to the diam-
eter D of a single circular aperture. The unit for the
angular coordinate u is taken as A/D where A is the ob-
served wavelength. The diffraction pattern of a single
aperture is: )
2J7 (mu)
Fo(w) o (mu)?



baseline | 1.0 1.5 25 35 4.5

op 47 33 20 14 1.1
Th opt 83 64 42 30 24

Table 1: Precision in the image position with optimum
weighting function and photon noise, with mg = 1000.
The first line is for an ideal detector, and the second for a
finite pizel size and a sampling frequency twice the fringe
frequency. The unit is nanorad for the nominal instru-
ment (that is with A\/D = 1076).

In order to simplify the derived analytic expressions,
fo (u) will be replaced with its gaussian approximation:

u?
fo(u) x exp ~ 02 (3)

U

with o, = 0.432

The precision in the position measurement of the inter-
ferogram with photon noise only is, with Eq. (1-3) :

iz =my [i—g + (27rb)2] (4)
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where m is the number of photons collected with a single
aperture of the interferometer. The coefficient 1.0 on the
right hand side of the equation is in fact slightly depen-
dent on the baseline, with departures from 1.00 smaller
than a few 0.01.

The rms values 0, of the position measurements are
given in Table 1 for different baselines. With the nom-
inal parameters for the instrument, D = 0.55 m and
A = 0.55pm, the unit for oy, is a nanoradian.

For comparison, we evaluate the precision that should be
reached with a full rectangular aperture containing the
two circular apertures of the interferometer, that is with
length (b+1)D and width D. We obtain o, = 1.7x 1073
with b = 2.5 and the same photon flux. Compared to the
value given for the interferometer, the improvement is less
than expected from the increased number of photons due
to the larger collecting area. We conclude that the Fizeau
stellar interferometer is more efficient than a single aper-
ture with respect to the precise location of the pattern
in the image plane. This is due to the fine structures or
fringes added in the diffraction pattern.

3. FILTERING AND SAMPLING WITH A
REALISTIC DETECTOR

In the focal plane of the telescope, a CCD camera is sup-
posed to operate in the time delayed integration mode.
Its raws are aligned with the scanning direction, and we
consider position measurements along this direction only.
Let Av the angular width of a pixel, and wg the rota-
tion speed of the spacecraft, the clock rate of the charge
transfer, from one column to the next, will be

At = Av/wg

and the integration of photo-electrons is synchronized
with the image displacement.

3.1. Filtering

The photon flux is summed both spatially and temporar-
ily by the detector. In the (’U,wgt) plane, the cells have
square shapes and signals from cells aligned with the first
bisector are summed together. In the moving frame of
the stellar image, the filtering function is the triangular
function with base 2Awv, the sampling frequency being
fs = 1/Av. The filtering effect is easily evaluated in the
Fourier space, the Fourier transform of the filter being

the sinc function:
. 2
h(f) = SO (wf/fs)
D= "r/ry

The interferometer fringes, at frequency f;r = b, have
their amplitude multiplied by a coefficient hy = h(b).
The observed interferogram will be approximated by:

g(u) = fo(uw)[1 + hy cos(2mbu)] (5)

The precision in the position measurement of this smooth
interferogram is estimated as in Section 2, that is with the
method of the optimum weighting function and photon
noise only. The precision is now given by:

% —my [(17—3 4 H(Zwb)z] (6)
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Alu) = hy + — cos(2wbu)

" 1+ hy cos(2mbu)

The coefficient H is smaller than 1, except for hy = 1.
It is nearly vanishing for h; = 0, that is for a sampling
frequency equal to the fringe frequency.

3.2. Baseline Optimization

The sampling frequency is the ratio between the focal
length of the telescope and the pixel width. With the
nominal value A/D = 107% taken as unit, the sampling
frequency is the ratio between the focal length, expressed
in meters, and the pixel width in microns. Its value
should be kept as small as possible, and certainly smaller
than a few 10.

The sampling frequency being a strong constraint in di-
rect fringe detection, we try to investigate what would
be the optimum baseline for a given sampling frequency.
Indeed, the coefficient H is a decreasing function of the
baseline, and the precision in the position measurement
given by Eq. (6) reaches a maximum for some intermedi-
ate baseline value. Numerical simulations with different
sampling frequency ranging from 2 to 20 show that the
optimum baseline is:

bopt = fs/2 (7

For the optimum baseline value, the filter coefficient is
hy = 0.405, that is to say the fringes are appreciably
smoothed out. The rms values o, opt are also shown in
Table 1 ; they have to be compared with the values o, for
an ideal detector. For a given baseline, the ratio between
these two values is about two. It increases slightly with
the baseline. We conclude that the finite pixel width of
a realistic detector brings quite a significant reduction in
the precision of the position measurements.



4. CORRECTION FOR THE UNDERSAMPLING

Given the sampling frequency, the fringe frequency is half
its value for the optimum baseline. The Nyquist rule for
sampling is not satisfied, which means that the interfer-
ogram cannot be recovered exactly from its samples and
the observed interferogram is dependent on the relative
phase between the fringes and the samples. In the fre-
quency (or Fourier) space, we find a case of spectrum
folding quite similar to the problem of base band con-
version nicely solved in radio astronomy (see Thompson
et al. 1986). By analogy, we shall use two detectors (cf.
two mixers) with a clock offset (cf. a phase shift of the
local oscillator) and then two linear combinations of the
outputs to separate positive and negative frequency bands
of the sampled signal (cf. upper and lower sidebands).

Let G(f) the Fourier transform of the interferogram g(u).
The sampling frequency f; being approximately twice the
fringe frequency, we can admit that

G(f)=0for |f| > fs
With v = f/fs, the Fourier transform I'(¢) of the under-

sampled interferogram is a periodic function with period
equal 1. In the range 0 < v < 1, the relation between I
and G reduces to:

I'v)=G(v)+G(v—-1) (8)

We suppose that the interferogram g(u) is obtained with
half a detector cell. Another half cell with a clock off-
set 7 (expressed as a fraction of the clock rate At) will
see a shifted interferogram, that is a linear phase shift
¢ = 27vT in the Fourier space. With two half cells 1
and 2 and a clock offset 7 = 1/2 in between, what will
be measured in the Fourier space is:

Fl(V) = Gl(V) + Gl(l/ - 1)

].-‘Z(V) = GQ(V) + Gz(l/ — 1)

with: )
Ga(v) = G1(v)e ™™

Ga(v—1)=-G1(v — 1)e_i’”’

The two Fourier transforms of the undersampled interfer-
ograms are linearly combined to give:

T, (v) =T1(v) + Ta(r)e™

r_(v)=T1(v) — I‘g(u)eim’

and we verify:

I\ (v) = 261()
r_(v)=2Gi(v-1)

As v € [0,1], the (+) combination gives the unbiased
Fourier transform of the interferogram for positive fre-
quencies, and the (—) combination gives the same for
negative frequencies. The exact Fourier transform being
recovered in the range —1 < v < 1, the result is the
same as if the interferogram were sampled with the fre-
quency 2 X fs. The phase of the fringe train, and hence
its location, is unaltered in this double detection process.

What about the signal-to-noise ratio? The pixel number

is the same for each half cell, so that the signal-to-noise
ratio (SNR) is on average the same for each detection, or

SNR; = SNRy

In the (+) and (—) combinations of two independent mea-
surements, two Fourier components add in phase, and two
other subtract, so that the signal-to-noise ratio for these
two combinations is the same as the signal-to-noise ratio
for each detection:

SNR, =SNRs

The noise fluctuations of the two combinations are uncor-
related on average, so that the resulting signal-to-noise

ratio is /2 times the signal-to-noise ratio of a half cell
measurement, that is the same as if a whole cell were
used instead of the two half cells:

SNRr=+v2x SNR;» (9)

‘On average’ means for arbitrary phase between the
fringes and the samples, and it may happen that the
resulting signal-to-noise ratio is slightly increased or de-
creased relative to the average result owing to the phase
of the individual measurements.

5. CONCLUSION

The precision of the image location has been estimated
in the case of photon noise only. The effect of pixel width
has been evaluated, and an optimum baseline found: the
fringe frequency should be approximately half the sam-
pling frequency. A method to correct for the effect of
undersampling has been investigated. The method, with
two adjacent half cells for the detector, requires that the
diffraction pattern is unchanged in its shift from one to
the other part of the detector. An alternative solution
would be to have two photosensitive layers, and their as-
sociated CCDs at the same location in the focal plane,
each layer detecting half of the incoming light, for exam-
ple one and the other polarization.

A main step is now expected from the study of dedicated
detector cells for direct fringe detection in the focal plane
of the telescope.
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