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ABSTRACT

The geometric observation equations for an aberration-
free, GAIA-like instrument are formulated in a flat space-
time metric. Given the expected measurement accuracy
of 10 microarcsec (parcsec), the significance of perspec-
tive acceleration and foreshortening terms is addressed.
Apparent place effects such as velocity aberration and
relativistic light deflection are also discussed. The un-
precedent potential astrometric accuracy of a GAIA-like
mission calls for a re-formulation of the observing equa-
tions in a general relativistic framework, which is best
suited to account for light aberration caused by the non-
stationary gravitational field of the Solar system. This
effort is underway.
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1. INTRODUCTION

In the presently adopted mission-concept design, GAIA
basic observation consists of measuring the displacement
of a stellar object with respect to the centre of the field of
view, at a certain mean time ¢, in the instantaneous scan-
ning direction. Thanks to the use of a Fizeau-type inter-
ferometer, the accuracy of such measurement is expected
to be of the order of 10 parcsec (see Lindegren 1995).
The telescope is meant to operate in continuous scanning
mode, following a scanning law similar to the Hipparcos
one, with the difference that GAIA measures all the ob-
jects which enter the field of view up to a given limiting
magnitude, whereas Hipparcos could only observe stars
from a list of pre-selected objects. Moreover, the capabil-
ity of observing stars at large separations is ensured by
using two interferometers rigidly connected.

GAIA will then produce an observation of the projection
along the scanning direction of the angular distance be-
tween any couple of stars brigther than V' = 15— 16 mag
that appear simultaneously in either one of the two fields
of view. Similarly to Hipparcos, the characteristic scan-
ning law permits to re-observe any object under very dif-
ferent viewing directions; therefore, its actual position on
the sky can be reconstructed from solely uni-dimensional
observations.

In the following, after briefly reviewing the satellite scan-
ning law and the geometry of a single observation, we
will formulate the differential observation equation in vec-
torial form for a flat space-time metric. We will also
evaluate the significance of the different terms, stating

the relations among vectors and the classical astromet-
ric quantities A, B, px, pg, ™. Finally, we will discuss
the treatment of apparent place effects, such as velocity
aberration, and of relativistic light deflection, which play
a very critical role at the parcsec accuracy level.

2. MODELLING THE OBSERVATION

2.1. Scanning Law

The satellite spin-axis, positioned at a fixed angle £ ~
55° to the Sun, revolves around the Sun with velocity
w1 =~ 6.3 rev/year. The optical axes of the two in-
terferometers lie on the plane perpendicular to the spin
axis, and rotate rigidly on such a plane with velocity
wg ~ 8 rev/day. We also call wy the mean velocity of the
Sun around the ecliptic. We define E(t) the unit vector
perpendicular to the optical axis at time t, and directed
along the instantaneous scanning velocity. Then, com-
bining the three rotations wg, w1, wa, one obtains (Betti
1982):
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At the initial time ¢ = 0, both the spin-axis and the op-
tical axis lie on the ecliptic, with the spin-axis preceding
the Sun in the direction of Sun’s motion on the ecliptic.
The above equations describe the nominal along-scan at-
titude of the satellite, allowing the determination of the
direction onto which the angular measurement on the sky
is projected. Deviations from such a law induced by, e.g.,
jet-firing actuators, mechanical instabilities, etc., have to
be estimated along with the adjustments to the astromet-
ric parameters.

2.2. Geometry of Observation

We consider the plane tangent to the celestial satellito-
centric sphere in the direction of the instrumental optical



axis. If r’ is the unit vector representing the apparent
direction to the star, then the observation is given by
the quantity z, i.e., the component along the scanning
direction of the projection of r’ onto the defined tangent
plane. We also call Ar the small vector correction includ-
ing all the apparent place effects that modify the path of
the light-ray from the source to the observer. Then, the
quantity r = r’ — Ar represents the geometric direction
to the stellar source. We introduce at this point the fol-
lowing quantities:

7 annual stellar parallax (rad)

U}, unit vector in the barycentric direction to the star;
V1 star barycentric tangential velocity (AU/year);
Vg star barycentric radial velocity (AU/year);

11, unit vector in the direction of V;
ug unit vector Satellite-Sun;

p distance Satellite-Sun (AU).

The following vectorial expression holds:

I'(t) = llb(T)[]. + ﬂ'VR(t — T)] + WfleT(t — T)
+ruep(t) (4)

where t is the epoch of observation and 1" the reference
epoch. The right hand side of Eq. (4) is a function of
the five classical astrometric parameters, whose improve-
ment is the main goal of the mission, namely, A, 3, ux,
g, and m. Spherical coordinates are trivially derived
from up = (cos A cosf3,sin A cos 3,sin 8); proper mo-
tion components i, fg can be easily computed as

wVr = prcosfex + pgeg,
where the proper motion units are rad/year, and ey and

eg are unit vectors tangent to the celestial sphere at the
star given by

—sin A — cos Asin 3
ey=| cosA |, eg =| —sinAsinf
0 cos 3

3. THE LINEARIZED CONDITION EQUATION

Before formulating the condition equation, we recall that
Eq. (4) is non linear in the parameters to be estimated. In
addition, as previously mentioned, the observable, which
we called z, is the projection of r’ along E. Therefore,
we can write the observation equation in compact form
as

z=r1r-E. (5)

We also note that r’ is not a unit vector, and shall there-
fore be normalized before inserting it in (5). Eq. (5) must
be linearized with respect to catalog values rg and to
some provisional attitude knowledge Eg. Thus, lineariza-
tion of Eq. (5) gives:

Az =ér-Eq+6Ar-Eg +6E -r) + ¢ (6)

where € includes both higher order terms and observa-
tional errors. Terms ér and E contain the adjustments

to the astrometric parameters and to the along-scan at-
titute respectively. We also explicitely added the term
6Ar, which represents possible additional adjustments
due to imperfect knowledge of the parameters used for
the computation of apparent place effects. Nonetheless,
to the level of accuracy attainable, such effects are to be
removed a priori from the observation = before entering
it in Eq. (5). Az is simply the difference between the
actual observation and its calculation based on the best a
priori knowledge of the quantities involved. Now, substi-
tuting Eqs (1-4) in Eq. (5), and writing Eq. (6) in explicit
form one obtains the condition equation in a usable form.
When differentiating Eq. (5), we must make sure that all
the terms neglected (which are implicitely carried in €),
are of the order of a fraction of parcsec or less; otherwise,
the risk would be there to spoil the quality of GAIA ob-
servations by introducing systematic errors of magnitude
comparable with those of the measurements themselves.

3.1. The Effect of Stellar Radial Velocity

The formulation presented above is quite general, and ap-
plies as well to the Hipparcos observations, as in Lattanzi
et al. (1990). We now specialize it to the mission design
under study by evaluating to which extent the change
on a star position caused by its radial velocity can be
detected by GAIA. First, we examine perspective acceler-
ation, which induces a secular change in the barycentric
coordinates of the star. We call v the yearly angular
change due to proper motion, and ¢ the total yearly an-
gular change if one takes into account also radial velocity.
Assuming for simplicity that the moduli of Vi and Vi are
identical, from planar geometry one obtains, to first order
in TVg:
v =aVr(1l — 0.47VR); ¢ =nVp.

Hence, the perspective acceleration effect is given by the
quantity ¥ — ¢ = 0.472VRVy. This quantity becomes
of the order of 10 parcsec or larger for objects having
Vg > 100 km/s, at a distance D < 10 pc, after a time
span >1 year. In conclusion, GAIA will be able to de-
tect perspective acceleration for some stars, for which one
would therefore need accurate radial velocities in order
not to bias their proper motion estimate.

We now want to evaluate the so-called foreshortening
term, which is the variation of the star position, as seen
by the observer, induced by the radial velocity of the
source. In this case also, we call v the angle defining
the apparent direction of the source, calculated by taking
into account its radial velocity; while ¢ indicates the ana-
logue angle, this time computed diregarding V. Again,
applying simple geometry, one obtains, to first order in 7

_ 72Vg sinu
1+ Z(2VR — cosu)

é—

where u is the angle between the observer and the star
as seen from the Sun. In this case, the effect is proba-
bly negligible for all accessible stars over a time span of
several years.

3.2. Relativistic Velocity Aberration

In the framework of special relativity, the velocity aberra-
tion is computed by applying a Lorentzian transformation



between the barycentric reference frame and the one co-
inciding with the reference frame of the observer at the
time of observation f, which moves with constant veloc-
ity V, again coincident with the instantaneous velocity of
the observer at time f{. The second-order formula trans-
forming the barycentric direction s into the observed one,
i.e. §/, is the following (see, for example, Green 1985):

, 14 1V? 9
s'=s csx(sxn)+2 2 [2(s -n)* — 1][s — (s - n)n]
where n is the direction of the observer velocity V. Con-
sidering a geostationary orbit, the instantaneous satelli-
tocentric velocity would be of the order of 3 km/s. The
magnitude of the second-order term (V2/62) is about 20
parcsec, significantly larger than the budgeted error.

Very accurate knowledge of the satellite ephemerides is
critical to the calculation of velocity aberration. In fact,
an uncertainty of only 1 mm/s on V corresponds to an
error of V/c ~ luas on the stellar apparent displacement
caused by velocity aberration.

3.3. Gravitational Light Deflection

A light ray passing near a perfectly spherical body is de-
flected, in accordance with the predictions of general rel-
ativity, by the full angle

A4GM
c2b

where G is the constant of gravitation, M is the perturb-
ing mass, and b the so called impact parameter, which
is equal to the radius of the perturbing mass for a limb-
grazing ray. For b in AU, M in solar masses, and ¢ in
AU /year, G is numerically equal to an2, Using the above
formula, one can see for example that the maximum de-
flection caused by the Sun, i.e., for a limb-grazing ray
(b= 0.00466 AU), is 1.75 arcsec, while the analogue
value for Jupiter is only 17 mas. However, for observa-
tions made by an Earth satellite like GAIA one has to
consider the entity of the deflection in case of sources at
large angular separations from the perturbing mass, and
its variation with observing conditions. A general expres-
sion for this general case (Ward 1970) is given by

_ 4GM (1 + cos®)
T e 2

where 6 is the angle between the light source and the
perturbing mass as seen by the observer on a geostation-
ary orbit. If we then calculate the effect of light bending
due to Earth for a source, say, at 8 = 90°, we obtain
v ~ 50 pas, comfortably observable by GAIA. If we ex-
amine the gravitational perturbation by Saturn as seen
by GAIA, the amount of light deflection becomes of the
order of 10 pas for a light source at a 10° from it.

The above discussion deals with ideal bodies. In real-
ity, since the masses of planets are not perfectly spheri-
cal, both their quadrupole moment and angular momen-
tum can, in principle, affect the deflection, and therefore
need to be carefully estimated (Schutz 1982). It is clear
then, that in the context of a GAIA-like mission, gravi-
tational light bending has to be carefully gauged for all
Solar system bodies, or else constraints are to be put on
the minimum angular distance between the planet under
consideration and the observed stellar source.

4. GENERAL RELATIVITY

The problem of the reduction of high-precision astromet-
ric observations in a General Relativistic framework has
been addressed by several papers in the past years by
Murray (1981), Brumberg et al. (1990) and Klioner &
Kopejkin (1992). Such an approach permits to natu-
rally take into account the effect of gravitational light
deflection induced by a non-stationary local field. In this
framework, the observable (or natural) direction is de-
fined to be the direction of the tangent to the photon
track (geodesic) at the point of observation as seen in a
local flat space-time frame. Therefore, after computing
the natural direction starting from the geodesic equation
of the light ray, one can derive the proper direction, which
is the direction as seen by a moving observer, by a simple
Lorentzian transformation.

An attempt at rederiving these equations for the reduc-
tion of astrometric measurements involving angular sep-
arations on the sky is being made in collaboration with
the University of Padova (Vecchiato 1996).

5. CONCLUSIONS

We have presented the condition equation for a GAIA-like
mission in a flat space-time metric, neglecting instrumen-
tal perturbances. An analysis of the effect of stellar ra-
dial velocity on the star’s angular displacement has shown
that the perspective acceleration term is significant at the
parcsec level for very few stars, while the foreshortening
term is negligible. Gravitational light deflection caused
by the Earth and Saturn—and possibly by other Solar
system bodies—Dbesides that due to the Sun and Jupiter,
has to be taken into account. A fully general relativistic
approach to the formulation of GAIA observation equa-
tion is under study.

REFERENCES

Betti, B., 1985 Integrated Form of the Scanning Law
FAST Newsletter No. 3

Brumberg, V.A., Klionre, S.A., Kopejkin, S.M., 1990, In-
ertial Coordinate System on the Sky Lieske and Abal-
akin (eds.)

Green, R.M., 1985, Spherical Astronomy Cambride Uni-
versity Press

Klioner, S.A., Kopejkin, S.M., 1992, AJ, 104(2), 897

Lattanzi, M.G., Bucciarelli, B., Bernacca, P.L., 1990, Ap.
J. Suppl., 73, 481

Lindegren, L., Perryman, M.A.C., 1995, The GAIA Con-
cept, ESA SP-379, this volume

Murray, C.A., 1981 MNRAS, 195, 639

Schutz, B.F. 1982, Proceedings of an International Col-
loquium on The Scientific Aspects of the Hipparcos
Mission (ESA SP-177)

Vecchiato, A., 1996, Thesis, University of Padova, in
preparation

Ward, W.R., 1970, Ap. J., 162, 345



