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ABSTRACT

The proposed baseline GAIA mission will be capable to
detect the astrometric signature of Jupiter-size planets
around half a million stars, using either global or narrow-
angle astrometry. If the mission can realize the higher
astrometric accuracy photon statistics allows for bright
stars, lower-mass planets (from Earth size to ten times
larger) can be found around ten to a few hundred stars.

1. ASTROMETRIC DETECTION OF A PLANET

The existence of planets around stars other than the Sun
has been traditionally one of the ‘great questions’ of as-
tronomy. The scientific relevance of this question centers
on what can be learned about the formation of planetary
systems from the statistical properties of a large num-
ber of such systems, especially if around stars of different
mass, temperature, and age. In this sense, all planets, re-
gardless of their mass and orbital period, are interesting,
and the emphasis is in acquiring as large and statistically
well-defined sample as possible.

Of course, the interest in the existence of other plane-
tary systems goes beyond pure science. The underlying
question—are we alone?—is one of great appeal to sci-
entists and non-scientists alike. From this point of view,
inhabitable planets are the most interesting, and Earth-
like planets (rocky, massive enough to support an atmo-
sphere, at the right temperature for liquid water) are the
prime targets, because of the desire to look for places
where humans could live.

Techniques that have been used so far to detect extraso-
lar planets include astrometric (see, e.g., Gatewood 1987)
and radial velocity studies (see McMillan et al. 1994 and
references therein). Both involve the detection of the re-
flex motion of the star with respect to the barycenter
of the star-planet system; radial velocity is more sensi-
tive to planets with short orbital times, while astrometry
is more sensitive to long period—as long as the orbit is
properly sampled in time. Other proposed techniques in-
volve microlensing, the detection of changes in the light
curve due to transits of the planet in front of the star,
and direct detection of the light emitted by the planet. A
detailed summary of direct and indirect detection tech-
niques, their current status and their future possibilities,
can be found in the TOPS report (Burke et al. 1993).

If a planet is detected astrometrically, then its mass and

orbital parameters can be determined with techniques
similar to those used for binary stars (for a full discus-
sion see Bastian & Bernstein 1995). Therefore, all plan-
ets identified astrometrically—unlike, for example, mi-
crolensing techniques—will have complete information on
their orbits, which will prove invaluable for studies of the
origin of planetary systems.

To date, the only planet-mass objects confirmed outside
the solar system are those revolving around pulsars (see
for example Wolszczan & Frail 1992). Because of their
peculiar environment, such planets may not be significant
in terms of the formation of planetary systems around
normal stars, and they certainly do not represent good
candidates for (human-like) life.

While there are good reasons to expect that planetary
systems may be relatively common, such as the preva-
lence of binary stars and of circumstellar disks around
young stars, there is no confirmed detection to date,
even though ground-based astrometric and radial veloc-
ity techniques have started to probe an interesting region
of parameter space. The negative results are not yet en-
tirely significant, however, since the accuracy reached is
comparable to the signal expected, and the sources of
error from the ground are numerous. With continuing
improvements, it is likely that a few Jupiter-like planets
will be found from ground-based astrometric studies in
the next few years (see for example Pravdo & Shaklan
1995). Direct detection of giant planets is also possible
from the ground in the next 5-10 years (see for example
Burrows et al. 1995).

Even so, space-based astrometry with the precision of
the GATA mission concept (Lindegren & Perryman 1995)
will push the search for planets into a new dimension.
GATA will improve the astrometric accuracy by a factor
50—possibly more for bright stars; this means a factor
50 in distance, or a factor over 10° in volume surveyed.
Instead of a few cases, a few hundred thousand can be
studied, making both the statistical properties (if planets
are found) or the negative result (if none are) much more
significant. Even if the first planet around a normal star
will be found by some technique other than space-based
astrometry, a GAIA-like mission has the potential to find
many such planets, and thus to provide very valuable
information on the statistical properties of solar systems
and their formation process.

For simplicity, we restrict the following discussion to the
case of a single planet: multiple planets create additional



difficulties and increase the parameter space signficantly,
so the possibility of multiple planets must be considered
in any estimates of detection probability. Nevertheless,
it is reasonable to expect that, in the case of multiple
planets, one will provide the dominant signature, and
the others can be considered as perturbations.

Which signature is dominant depends not only on its
maximum amplitude, but also on the time scale of the
observations—orbital periods much shorter than the sam-
pling rate will be difficult to detect because of aliasing,
and periods much longer than the total mission length
will produce near-straight line motion, which will be dif-
ficult to separate from the proper motion of the star. In
addition, periods very close to one year will be difficult
to separate entirely from the apparent motion due to the
star’s parallax.

In this presentation, we neglect all these complications
and consider simply the detection of a well-sampled orbit,
without parallax degeneracy, and for a single planet. We
consider such an orbit ‘detectable’ if the amplitude a of
the astrometric signature (equation 1) is larger than three
times the standard error of the one-year normal point,
namely the error accumulated in each coordinate of the
star’s position in one year of observations. All the addi-
tional complications mentioned above can be subsumed
into an ‘average detection probability’, which will be a
function of amplitude of the signature, orbital period,
and mission parameters, and will reflect an average over
properties such as ecliptic latitude (which determines the
sampling law and the shape of the parallax ellipse), or-
bit inclination, eccentricity, and phase, and any other
parameters that may be required to specify the orbit of
the planet. We adopt the 3—o requirement to ensure that
the ‘average detection probability’ be reasonably large, at
least for well-sampled periods. A detailed study of the ac-
tual detection probability, including a realistic scanning
law, measurement errors, and random orbit orientation
is under way.

2. NARROW ANGLE VS. GLOBAL ASTROMETRY

A global survey mission consists of measurements of stel-
lar positions in a global reference system. With a design
such as GAIA’s, each measurement will be in essence uni-
dimensional, since the coordinate along the scan direction
is measured with much higher accuracy than the coordi-
nate perpendicular to the scan. The full two-dimensional
information results from combining a number of indepen-
dent scans with different orientations. The astrometric
signature of a planet can be recovered by modeling the
position variation it would produce on individual scans,
similar to what has been done for binary stars in Hippar-
cos data (see Bastian & Bernstein 1995).

The accuracy of individual position measurements de-
pends on both the knowledge of the relative position of
all optical elements, such as the baseline of each inter-
ferometer, and on how accurately the fringe center can
be measured in the focal plane. The former depends on
accurate position control and, presumably, on high pre-
cision metrology; the latter is a function of the star’s
brightness. For luminous stars, the metrology may set
the ultimate limit to the global positional accuracy in
each measurement. In this case, it is useful to explore
the possibility of searching for planets with ‘narrow angle
astrometry’ techniques, which rely on the determination
of a star’s position relative to other stars in the same field

of view. This measurement is less sensitive than global
ones to metrology errors, because each interferometer is
seen as a single telescope and precise knowledge of its
orientation with respect to the other interferometers is
not required. A few necessary instrumental parameters,
such as the instantaneous plate scale, can be determined
by bootstrapping from the global solution using an en-
semble of stars, and thus with higher accuracy than the
position of a single star.

The narrow angle approach is possible with a mission
such as GAIA because of the large number of stars
present in a field of view—an average of about 1000. Even
if only 10% of these stars can be used to determine an
average reference frame—because of binaries, stars too
far away within the field of view, and so on—we estimate
that the instantaenous reference frame can be determined
with an accuracy of about 12 pas, comparable with the
global accuracy obtained with a baseline metrology error
of 150 pm (metrology accuracy and its effect is discussed
in Section 3.2 below).

The remainder of this document is concerned mostly with
the global astrometry approach, which promises better
results when very high accuracy is required. It is useful to
keep in mind, hovever, that, even in the case of metrology
significantly worse than our worst-case approach, very
good results can be achieved in the field of planetary
search, especially for Jupiter-like planets.

3. MEASUREMENT ACCURACY
3.1 Basic assumptions

The error of each positonal measurement is the com-
bination of the error in the measurement of the fringe
position and of the error in the knowledge of the effec-
tive baseline, which determines how the fringe position
in the focal plane translates into an angle on the sky.
Within the current GAIA concept, three interferometers
are used, and their relative orientations (the ‘basic an-
gles’) are expected to be known to very high accuracy.
In practice, the necessary (sub-nm) accuracy will prob-
ably be reached by a combination of active control and
laser metrology. Without entering into the details of how
such a goal can be achieved, we consider the following
simplified model: one of the three interferometers, called
the ‘reference’ interferometer, is used to determine the
instantaneous attitude of the on-board reference system,
which is controlled with laser metrology, and the orien-
tation of the effective baselines of the other two inter-
ferometers is therefore known with an accuracy given by
the ‘baseline error’, due to combined metrology errors on
both reference and science interferometers. This model
is adopted for simplicity only; the satellite actually mea-
sures a large number of angles between stars, and the in-
stantaneous position of the satellite can be reconstructed
a posteriori from the global solution. Within this simpli-
fied model, it is appropriate to neglect the uncertainties
in the baseline orientation arising from uncertainties in
the stellar positions.

3.2 Metrology error

What is a likely figure for the metrology error? Both
the OSI team at JPL (Giirsel 1993) and the POINTS
team at CfA (Noecker et al. 1993, Noecker 1995, Reasen-
berg et al. 1995) have reported picometer level accuracy



in relative measurements in a laboratory setting, where
the limitation is fluctuations in air density in the path
of the metrology laser beam. Such accuracy has ben
reached over short (few wavelengths) variations in path
length, which are appropriate to the GAIA design if a
good active thermal control is included. (For compar-
ison, Michelson designs such as POINTS and OSI need
to measure accurately much longer path lengths, because
of the delay lines involved.) An additional advantage of
the GATA design is that only variations over short time
scales need to be monitored; thanks to 27 closure, the
instrument self-calibrates over time scales of order of the
spin period.

However, the few pm error quoted refers to the preci-
sion and stability of a one-dimensional laser gauge mea-
surement of a single optical path. Maintaining the accu-
racy of the interferometer baseline is much more complex,
first, because the three-dimensional position of many op-
tical elements needs to be monitored simultaneously, and
second, because of the possible differences between the
optical path of starlight and of the laser gauge beams.
Noecker (1995) lists a number of possible systematic er-
rors for the POINTS mission concept. A similar study
has yet to be carried out for the GAIA mission concept,
but it is likely that controlling the interferometer base-
lines to a similar accuracy will prove similarly complex.
Furthermore, pm level metrology has not been demon-
strated in space, and therefore it would be overly op-
timistic to base our expectations on the best numbers
obtained in a laboratory setting. Nonetheless, a total
figure of 250 pm for the total baseline error, as defined
above, can most likely be achieved without excessive dif-
ficulty; we will refer to this case as ‘standard metrology’.
A baseline error of 250 pm translates into a positional

error of about 20 pas on a single measurement.

We consider also the possibility, not unlikely at this stage,
of metrology which is 5 times more accurate, reaching an
effective baseline error of 50 pm, corresponding to an
angle error of 4 pas; this case will be called ‘accurate
metrology’. Finally, we will briefly consider a best-case
scenario in which metrology accuracy is improved by an
additional factor of 10, to an effective baseline error of
5 pm; this will require major developments in the field,
but it is the only case in which a few Earth-like planets
can be detected (see Section 5.3).

3.3 Photon noise and fringe measurement

Once the interference fringe is detected, either directly
or through some form of grid modulation, its position
with respect to the reference frame of each interferometer
determines the ‘position’ of the star. Any uncertainty
in the measurement of the ‘fringe position’ (in practice,
this may mean its centroid, center of symmetry, or some
other fiducial quantity) reflects directly into an error in
the measured position of the star.

If the fringe is properly sampled, the accuracy with which
its position can be measured is shown by Lindegren
(1978) to be € = )\/(47r:z:rms\/JV), where zrms is the rms
size of the aperture in the measurement direction. For
two circular apertures of diameter D and with a cen-
tral separation B, we have zrms = /(B/2)2 + (D/4)?;
for the baseline GAIA parameters (B = 2.45 m, D =
0.55 m), zrms = 1.23 m (Lindegren & Perryman 1995).
For A = 550 nm, this translates into a theoretical mea-
surement accuracy of 7.3 mas/+/N.

Table 1: Single-observation positional error in the scan direction

|4 Single-measurement error

Single-pass error

Photon only 250 pm metr 50 pm metr

250 pm metr 50 pm metr

(mag) (pas) (as) (as) (as) ( uas)
0 0.100 20.0 4.00 6.32 1.26
1 0.159 20.0 4.00 6.32 1.27
2 0.251 20.0 4.01 6.32 1.27
3 0.398 20.0 4.02 6.33 1.27
4 0.631 20.0 4.05 6.33 1.28
5 1.00 20.0 4.12 6.33 1.30
6 1.59 20.1 4.30 6.34 1.36
7 2.51 20.2 4.72 6.37 1.49
8 3.98 20.4 5.64 6.45 1.78
9 6.31 21.0 7.47 6.63 2.36
10 10.0 22.4 10.8 7.07 3.41
11 15.9 25.5 16.4 8.07 5.17
12 25.1 32.1 25.4 10.2 8.04
13 39.8 44.6 40.0 14.1 12.6
14 63.1 66.2 63.2 20.9 20.0
15 100. 102. 100. 32.2 31.6
16 158. 160. 159. 50.5 50.1
17 251. 252. 251. 79.7 79.4
18 398. 399. 398. 126. 126.
19 631. 631. 631 200. 200.
20 1000 1000 1000 316. 316.




However, this optimal measurement accuracy can only
be achieved in the monochromatic case. For a filter
bandpass of 150 nm, the optimal measurement accuracy
is about 12.0 mas/\/lv, or a factor 1.6 worse. In ad-
dition, some accuracy will be lost as a consequence of
sub-optimal sampling in the focal plane (grid modula-
tion, finite pixel size); it is likely that this process will
cause an additional loss in accuracy of 20-40%. In the
following, we assume a single-measurement accuracy of

16 mas/\/lv.

The number of photons detected depends on the magni-
tude of the object, the filter used, and the total system
efficiency. In the following, we assume a filter some-
what wider than Johnson V and a total system effi-
ciency of 20%. These numbers should be indicative of
realistic expectations for the system, and can be easily
rescaled to different assumptions. The monochromatic
flux equivalent of a zero magnitude object in Johnson V'
is 3.80 - 10_9e1‘g cm_2s_1A_1, which, at 55004, corre-
sponds to 1045 photons em~ 2571 AtV =15 mag, with
a total collecting area of 4750 cm? (2 apertures of 0.55 m
diameter each), an effective filter width of 160 nm (corre-

sponding to a Gaussian of FWHM 150 nm), and an effi-

ciency of 0.2, this corresponds to about 1585 photons sL.

With a spin period of 2 hours and an effective field of view
of 0.8deg, each individual integration lasts about 16 s,
for a total of 25,400 photons per pass at V' = 15 mag.
Thus, the single-pass accuracy of the measurement of the
fringe position will be 100 pas at V = 15 mag. This
number becomes 10.0 pas at V' = 10 mag, and 1.00 pas
at V = 5 mag. The single-measurement error due to
photon noise becomes comparable to the metrology er-
ror at V = 11.5 mag for ‘standard’ metrology, and at
V = 8.0 mag for ‘accurate’ metrology.

3.4 Total positional error; one-year standard point

With a scanning law similar to that used by Hipparcos,
each star will be visible in an average of 5 consecutive
scans, in each of which its position will be measured
twice (by the two ‘science’ interferometers). The total
positional error in each observation—which is taken to
include a set of consecutive scans in which the star is
present—will then be the combination of the metrology
and the photon error, divided by 4/10. Table 1 summa-
rizes the total single-observation error expected as a func-
tion of apparent magnitude for both standard (250 pm)
and good (50 pm) metrology.

The error in the one-year standard points depends on the
number of observations per year, which is a function of
the ecliptic latitude: stars at high ecliptic latitude are
observed more often. We assume a minimum of 6 ob-
servations per year. The error in each coordinate should

2/6 = 0.58 times the single-

observation error (the +/2 at the numerator takes into ac-
count that each observation is one-dimensional, but two
coordinates must be measured). The actual error will be
somewhat larger, because of the errors in the measured
parallax and proper motion; the contribution of these
terms varies, and will impact the accuracy on different
time scales in a different way. We adopt a factor 0.8
as a reasonable compromise. Therefore we estimate the
error in the one-year normal points to be 0.8 times the
error listed in Table 1, probably a conservative estimate
especially at high ecliptic latitude.

then be approximately

4. PLANET DETECTION

Let us try now to estimate the number of stars around
which a planet of given characteristics can be found, if
they had such a planet. Since there is no guarantee that
stars possess planets of given characteristics, we refer to
such stars as ‘candidate’ stars. One of the advantages
of a survey mission is that all stars within a given range
of properties can be searched for planets; if the num-
ber of candidates is large, the probability of finding a
planet increases even if such planets are rare. For ex-
ample, we will find that the number of candidate stars
for Jupiter-like planets is in the hundreds of thousands;
if Jupiters are rare, as some initial ground-based results
seem to suggest, then the ability to search a very large
number of stars is extremely important. Even if plan-
ets are relatively common, having a significant number
of detections, each with full orbital information, will be
very useful in testing theories of planetary formation.

We consider in the following three basic types of plan-
ets: ‘Jupiter-like’, which have mass and orbital period
comparable with Jupiter; ‘big Earth’, which have orbital
period like the Earth but a mass ten times larger, com-
parable to the rocky core of Jupiter; and ‘Earth-like’,
which have both mass and orbital period comparable to
the Earth’s. Jupiter-like planets have the largest astro-
metric signature and are easiest to find; Earth-like have
an astrometric signature smaller by a factor 1500, and
are very difficult to find. Big Earths are hard to find,
but not as hard as true Earth-like planets.

4.1 Astrometric signature and maximum detection distance

The astrometric signature a of a single planet of mass
mp, orbiting at a radius rp from a star of mass ms which
is at a distance D from the Sun will be

mpT m T
o= PP arcsec = 2.94 2O P pas , (1)
ms mg ms D

where the orbit is assumed circular (the maximum cor-
rection for an eccentricity e < 0.3 is less than 5%), rp is
measured in AU, and D is in pc.

For a given system, the astrometric signature decreases
with increasing distance, while the measurement error
increases as the star becomes fainter with increasing dis-
tance; thus we can define the ‘maximum detection dis-
tance’ Dmax as the maximum distance at which the 3-o
condition for detection is fulfilled.

Explicitly, given masses of star and planet, orbital radius,
and absolute magnitude My of the star, the maximum
detection distance Dmax is the solution for D of the equa-
tion

9.94 R MO TP _ 0.8
) mg ms D T V10

) 1z (2)
{[1oo(D/10)-1o°-2<MV—15>] +afnetr} :

where the left-hand side is the astrometric signature o,
and the right-hand side is thrice the error in the one-
year normal point (both in pas), assuming a single-
measurement error of 100 gas for a star with V' = 15 and
a single-measurement metrology error ometr. The factor
0.8/4/10 effects the conversion from single-measurement



error to one-year normal point, as discussed in Sec-
tion 3.4. In the following, we have assumed a relation
between mass and absolute magnitude typical of main-
sequence stars; a different relation must be used for other
evolutionary stages (giants, white dwarfs, etc).

4.2 Planet properties for non-solar-mass stars

While ‘Earth-like’ and ‘Jupiter-like’ planets can be de-
fined unambiguously for stars like the Sun, the exten-
sion of these definitions to stars with mass (and luminos-
ity) different from the Sun is ambiguous. For example,
the planet’s mass can be kept constant either in physical
units or as a fraction of the mass of the central star; the
latter implies constant amplitude of the astrometric sig-
nature, and, depending on how planets form, may well
be more realistic. Similarly, as the mass of the central
star changes, either the orbital radius or the period (but
not both) can be kept constant; or it is possible to keep
constant some combination of the two, in order, for ex-
ample, to preserve the equilibrium temperature of the
planet. The latter may well be the relevant combination
in terms of physical properties of the planets, since it
has been suggested that a specific temperature range is
associated with the formation of gas giants.

In order to explore a variety of possibilities, we consider
three cases: constant mp and R; constant mp/m;s and R;
constant myp /ms and P. The conclusions remain much
the same for all three cases.

5. NUMBER OF CANDIDATE STARS

The total number of candidate stars for each set of planet

properties can be determined by estimating the total
number of stars which are closer to us than the max-
imum detection distance, as defined by their absolute
magnitude. For distances larger than 20 pc, this can be
done statistically, using the known luminosity function
of nearby main sequence stars, which we take from the
TAS Galaxy Model (Bahcall et al. 1987). This luminosity
function is derived from those of McCuskey (1966) and of
Wielen et al. (1983), with suitable separation into evolu-
tionary sequences and density components. It has been
used to represent successfully the observed properties of
many different observations of nearby and distant star
samples. It is certainly adequate for the present pur-
pose. The mass-luminosity relation is taken from that
tabulated in Mihalas & Binney (1981). For distances
smaller than 20 pc, the average stellar density predicted
from the luminosity function should be replaced with the
actual stars found, for example, in the Gliese (1969) cat-
alog, or from the revised sample of nearby stars derived
from Hipparcos (Perryman et al. 1995). However, actual
stars cannot properly be used unless the dependence of
the detection probability on ecliptic latitude is assessed,
and this information will only be available after the full
simulation of the planet search. Therefore, in this ex-
ploratory study we consider only the average stellar den-
sity as determined from the luminosity function.

5.1 Case 1: Jupiter-like planets

Jupiter-like planets have a relatively large astrometric
signature—500 pas at 10 pc for a solar mass star. With
‘standard’ metrology, Jupiter-like planets can be detected
to over 200 pc for solar-type stars; this is the maximum
detection distance for constant planet mass (see Fig. 1).

Figure 1. Mazimum detection distance (left) and number of candidate stars (right) for Jupiter-like planets. The three

lines refer to the different cases identified in Section 4.2.



For example, a solar mass star has V' ~ 11 mag at 200 pc,
thus an error on the one-year normal point of ~ 7 pas; at
that distance, the astrometric signature is about 25 pas,
over three times the one-year normal error. For constant
mp/ms, the detection distance increases to 300 pc for
very massive stars. With ‘good’ (50 pm) metrology, the
maximum detection distance remains pretty much the
same for all but the most massive stars.

The total number of candidate stars is ~ 5-10° (Fig. 1),
regardless of whether the planet mass or the mass ratio
is held constant. This number may be slightly overesti-
mated, by about 20%, because of the assumption of con-
stant stellar density away from the galactic plane. The
very large number of candidate stars promises a very clear
answer to the question of how common Jupiter-like plan-
ets are, and what is the distribution of their properties
with respect to those of the central star. The detection
margin is large enough that numerous multiple-planet
cases should be observable as well.

5.2 Case 2: Big-Earth planets

This case is somewhat artificial, and is included to bridge
the gap of three orders of magnitude between between
the astrometric signatures of Jupiter-like and Earth-like
planets. We consider planets of 10 Earth masses at 1 AU

from a solar-mass star, suitably rescaled for stars of dif-
ferent mass. The astrometric signature at 10 pc is about
3 puas, a factor of 150 less than for Jupiter-like plan-
ets. As a consequence, such planets can only be detected
around only nearby stars. Since such stars are typically
(apparently) bright, the metrology error is an important
part of the total measurement error, and thus the quality
of the metrology is crucial in determining the detectabil-
ity of such planets.

The maximum detection distance is very small in the
case of ‘standard’ metrology; very few candidates would
be found in that case. With ‘good’ metrology, however,
the maximum detection distance increases to about 10—
12 pc, depending on the assumptions used, and of order
of 100 candidate stars can be found (Fig. 2).

5.3 Case 3: True Earth-like planets

The considerations made for big-Earth planets apply
a fortiori to true Earth-like planets. Even with good
metrology, such planets, which have an astrometric signa-
ture 10 times smaller than big-Earths, cannot be detected
beyond 1-2 pc, and therefore no suitable candidates ex-
ist. Is it possible to push the accuracy limits further, and
detect a (small) number of Earth-like planets?

Figure 2. Mazimum detection distance (left) and number of candidate stars (right) for Big Earth planets. The three lines

refer to the different cases identified in Section 4.2.



As discussed in Section 3.2, laboratory experiments sug-
gest that laser gauges can in fact achieve picometer-level
accuracy. A comparable baseline accuracy, while cer-
tainly not easy, may not be out of the question with
careful instrument design. Therefore the calculations
for the Earth-like case have been repeated assuming
super-accurate metrology, 10 times better than the ‘good’
metrology above, corresponding to an equivalent base-
line error of 5 um (Fig. 3). At this level, a large num-
ber of other systematic effects may appear and limit
the accuracy of individual measurements (Noecker 1995).
Reasenberg et al. (1995) show, from a detailed design
analysis of the POINTS mission concept (with baseline
similar to GATA), that the systematic errors can proba-
bly be controlled to the pas level, which is what is re-
quired to allow the precision necessary to detect Earth-
like planets. While we cannot be certain that the same
study can be applied to GAIA, it is at least plausible
that most of the metrology gain will be reflected in a
more accurate baseline.

With super-accurate metrology, the maximum detection
distance for Earth-like planets increases to about 6 pc for
solar-type stars. On the basis of the average stellar den-
sity as determined from the luminosity function, about
10 candidate stars are expected (see Fig. 3), all appar-
ently bright (V' = 3-7 mag). We do not use individual
stars from the Gliese (1969) catalog because we do not
know how to account for the dependence of sensitivity on
ecliptic latitude.

On the basis of these considerations, detection of a small
number of candidate Earth-like planets appears possible,

with sufficient interest and expenditure of technical ef-
fort.

6. DISCUSSION

It is clear from the above discussion that the current
GAIA mission concept (Lindegren & Perryman 1995) will
be able to detect Jupiter-like planets around almost a
million candidate stars. Detection also implies full knowl-
edge of the orbital parameters. This exceeds the likely
output of any existing or proposed program, regardless
of the technique employed, and will generate invaluable
data on the frequency, formation, and properties of plan-
etary systems around normal stars.

Detection of less massive planets will require special at-
tention to the baseline accuracy of the mission. Good
metrology (at the 50 pm level) is required to detect plan-
ets of 10 Earth masses orbiting at 1 AU from a star some
10 pc away; a few tens of candidate stars can be found.
Very accurate (5 pm) metrology appears to be required
for detection of a few true Earth-like planets.

While these results are still preliminary and await a full
study of the planet detection process, they clearly indi-
cate the double strength of a high-accuracy survey mis-
sion like GATA: the ability to find many objects of the
Jupiter class, and a few objects requiring extremely high
accuracy. They also indicate the need to place the appro-
priate emphasis on metrology development and baseline
control in order to realize the full potential accuracy for
bright targets.

Figure 3. Mazimum detection distance (left) and number of candidate stars (right) for Earth-like planets. The three lines

refer to the different cases identified in Section 4.2.
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