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ABSTRACT

Astrometric binaries represent a challenge for high-
precision astrometry. Since astrometric binaries are fre-
quent, their non-linear orbital motions (of the photo-
center of the binary with respect to the center-of-mass)
may be considered as ‘cosmic errors’ in the positions and
proper motions of an ensemble of stars, if one assumes
(wrongly) linear motions for all the stars. We outline a
coherent scheme for ‘statistical astrometry’ which takes
the statistical effect of astrometric binaries on astrometric
procedures into account. The basic tools are correlation
functions between the orbital displacements in position
and velocity of a binary. We estimate the ‘cosmic errors’
in position and proper motion, and find that they are
much larger than the measuring errors of a mission like
GAIA. We discuss some implications of the astrometric-
binary nature of many of the stars on the strategy of a
mission and on the applications of the results. We em-
phasize that the data reduction procedure should include
the accurate modelling of a possible orbital motion of all
the stars. Then, for example, the high measuring accu-
racy of the parallaxes would not be lowered for most of
the stars.
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1. THE STATISTICAL NATURE OF
HIGH-PRECISION ASTROMETRY

High-precision astrometry of stars is severely affected by
the orbital motions of undetected or unmodelled astro-
metric binaries. This effect introduces a strong statisti-
cal aspect into astrometry as soon as the accuracy of the
measurements gets very high.

In classical astrometry, the basic assumption is that most
of the stars move linearly in time on a straight line. As-
trometric binaries are handled at best individually as rare
exceptions. The assumption of linear motion implies that
the proper motion is constant in time (except for some
higher-order effects) and that the position of a star can be
accurately predicted even for the distant past or future,
if the position and proper motion of the star is accurately
known at one epoch of time.

This basic assumption of linear motion of most of the
stars breaks down in high-precision astrometry. The mo-
tion of the measured photo-center of an astrometric bi-

nary consists of (a) the linear motion of the center-of-
mass of the binary, and (b) the wavy orbital motion of
the photo-center with respect to the center-of-mass. It
is the latter component (b) of the motion which is re-
sponsible for the statistical nature of high-precision astro-
metry. For example, the ‘instantaneous’ proper motion,
measured during a short interval of time, will vary with
the epoch of measurement (in accordance with the period
of the binary). The typical amplitude of this variation of
the proper motion, and similarly the orbital displacement
in position, introduce a noticable ‘cosmic error’ into the
measurements of positions and proper motions, as soon
as the accuracy of the measurements reach these typical
amplitudes of the orbital motions of the photo-centers of
astrometric binaries. For example, even if we were able to
measure at a certain instant of time the ‘instantaneous’
values of the position and of the proper motion of the
photo-center of an astrometric binary with infinite ac-
curacy, these results would not allow us to predict the
position of the photo-center at other epochs with high
accuracy. It is the ‘cosmic noise’ in the ‘instantaneous’
positions and proper motions which limits the accuracy
of our predictions.

The ‘cosmic noise’ mentioned above occurs only if we are
unable to determine the complete orbit of the astromet-
ric binary individually. Unfortunately, this will be prob-
ably the case for most astrometric binaries, even in high-
precision astrometry such as GAIA. The reason is the
rather short duration of astrometric missions (e.g., 3 years
for Hipparcos, or the envisaged 5 years for GAIA) with
respect to the orbital periods of most of the binaries.

Let us adopt, for illustrative purposes, the distribution
of the orbital periods of G-dwarf binaries, determined by
Duquennoy & Mayor (1991), as representative for astro-
metric binaries in general. Then the fraction of binaries
with orbital periods P in the interval 100 days < P <
10 years is about 20%. Only for this interval of periods,
we can hope to determine individual orbits directly from
GATA measurements.

There is another group of astrometric binaries, with pe-
riods in the range of 10 years to some 100 years for which
GAIA may be able to detect the astrometric-binary na-
ture because of a non-linear motion of the photo-center.
Such a procedure has been carried out already success-
fully for Hipparcos, where we determine for some stars
significant ‘acceleration terms’ g = du/dt or even dg/dt
(i denotes one component of the proper motion, t the
time). Unfortunately, these acceleration terms are of
limited use for long-term predictions. In most cases, we
have to neglect them in practical applications, thereby



going back to the ‘single-star model’ of linear motion. It
can be shown by methods similar to those discussed in
Section 2 that over long periods of time the linear model
produces more accurate results than the model with ac-
celeration terms.

The overall effect of astrometric binaries on all the ob-
served (and apparently single) stars depend also on the
fraction F of binaries among the stars. For main-sequence
stars of spectral type G or earlier, we know that F is at
least 65%. Due to the incomplete detection of binaries,
the true value of F may be as high as 80% or more. Even
if we subtract the detectable visual binaries and the astro-
metric binaries with individual orbits, the majority of all
the remaining GAIA stars will probably be astrometric
binaries, either undetected ones or those with accelera-
tion terms of limited use.

For GAIA, I would expect the following numbers: 1-10%
of the GAIA stars may be astrometric binaries for which
Keplerian orbits can be determined individually (Hippar-
cos: a few tenth of a percent), and 20-50% of the GAIA
stars may show significant acceleration terms (Hipparcos:
a few percent). But even if the astrometric-binary nature
is not detectable individually, the statistical effect on the
sample of all apparently single GAIA stars will be very
strong. Already the much less accurate Hipparcos mission
has provided this insight empirically. For example, the
comparison of proper motions from Hipparcos and from
the FK5 clearly shows that the differences between these
proper motions are significantly larger than the measur-
ing errors, because of the ‘cosmic errors’ introduced by
the effect of astrometric binaries. The much more accu-
rate GAIA mission will be much stronger influenced by
the astrometric-binary problem.

Earlier studies which discussed the effect of astrometric
binaries on high-precision astrometry have been present-
ed by Lindegren (1979), Soederhjelm (1985), Tokovinin
(1993), Brosche et al. (1995), and Wielen (1995).

2. A COHERENT SCHEME FOR STATISTICAL
ASTROMETRY

It is the aim of ‘statistical astrometry’ to incorporate the
statistical effects of astrometric binaries into astrometric
procedures, such as the comparison of proper motions
given in two independent astrometric catalogues or the
prediction of a position at a certain epoch from a position
and proper motion given in an astrometric catalogue. We
have developed a coherent scheme for such a statistical
astrometry. Details will be published elsewhere (Wielen,
in preparation). Here, we would like to outline the basic
idea only.

The fundamental tools for statistical astrometry are cor-
relation functions between the orbital displacements in
position and velocity at two instants of time. We de-
note by A:I:(t) the difference between the actual position
of the photo-center and its ‘mean’ value at time ¢. The
‘mean’ value is the long-term average of the position of
the photo-center. For circular orbits, the ‘mean’ position
coincides with the center-of-mass of the astrometric bi-
nary. In most cases of non-zero eccentricity, the ‘mean’
position is slightly different from the center-of-mass. Fur-
thermore, we denote by Av(t) the difference between the
actual velocity of the photo-center at time ¢ and the velo-
city of the center-of-mass. We now introduce the follow-

ing (auto-)correlation functions:

E(AL) = < Az(t)Az(t+ At) > (1)
n(At) = < Av(t)Av(t+ At) >, (2)
C(At) = <o(t)Az(t+ At) >

— < z(t)Av(t + At) > . (3)

The average is an ensemble average over the sample of
stars under consideration, but may be partially also en-
visaged as an average over the time f. In any case, the
correlation functions &, 7, { depend on the epoch differ-
ence At only, not on the epoch t itself. The special values
of £ and 7 for At =0,

£0) = <(Az())’> = ((Az)ms)® , (4)
n(0) = < (M)’ > = ((Av)ms)* , (5)

define the quantities (AZ)yms and (Av)yms, which we call
the ‘cosmic errors’ of £ and v. There is no correlation
between Az and Av for At = 0:

((0)=0. (6)

For strictly ‘instantaneous’ measurements of x and v,
there are relations between the correlation functions:

At = —dg/d(at) )
(A = d/d(At) = —~d¢/d(AY? . (8)

In the more realistic case of measurements of £ and v
which are ‘averaged’ over a finite interval of time (e.g.,
over about 3 years for Hipparcos, or 5 years for GAIA),
the correlation functions have to be corrected for this ‘av-
eraging’. The relations (7) and (8) are then not strictly
valid. The functions £(At) and 7(At) are symmetric in
At and look like cosinus functions with rapidly decreasing
amplitudes for increasing |At|. ((At) is antisymmetric
in At and looks like a ‘damped’ sinus function. All the
correlation functions should approach zero for |At| — 00.

We present two simple examples for applying these cor-
relation functions. First, we ask for the expected mean
error of a predicted position of a star. We assume that an
astrometric mission has measured ‘instantaneous’ values
of the position, z(t1), and of the velocity, v(¢1), at the
epoch t1. We now predict the position .'L‘p(tz) at time 2o
by using the linear model:

.’Bp(tz) = CL’(tl) + U(tl)(tg - tl) . (9)

Let us, for simplicity, assume that the measuring errors of
.’c(tl) and v(tl) are zero. Then the expected rms differ-
ence 0, between the true position z(t2) and the position
z,(t2) predicted by Eq.(9), is given by:

o2 = 2(0) — E(ts —t1)) — 2¢(ta — t1) (t2 — t1)
+ n(0) (t2 —t1)? . (10)

0y, may be called the ‘cosmic error’ of mp(tg). For
| ta — t1| — oo, the last term with 77(0) is the largest
one. For small values of |t2 — 1], Eq.(10) takes correctly
into account that o, is extremely small, because then
the linear prediction by Eq.(9) is very accurate.

In our second example, we compare two instantaneous
velocities (or proper motions), v(¢;) and v(t2), measured
for the same star at two different epochs 1 and 5. We
neglect again the measuring errors of v(¢;) and v(t3). In



the linear model, U(tl) and v(tg) would be equal. In the
presence of astrometric binaries in our sample of stars,
v(t1) and v(t2) would differ in general. The expected
rms difference is given by:

Oy = < (v(t2) —v(t1))* >
= 2(n(0) —n(ta —t1)) - (11)

In the limit |tz — 1| — 0o, we obtain 0'72}277}1 = 2 7(0).

|

In the limit |t2 - t1| — 0, both velocities do agree.
This is correctly described by Eq.(11), since in this case
n(ta — t1) — 7(0) and hence 0y, », — 0. In both
examples, we have not translated the position and veloci-
ty into an angular position and a proper motion, as it
should be done in real applications. Both Egs.(10) and
(11) show that the correlation functions &, 7, { are useful
tools for statistical astrometry.

3. ESTIMATES FOR THE COSMIC ERRORS IN
POSITIONS AND PROPER MOTIONS

We would now like to demonstrate how important the
‘cosmic errors’ in positions and proper motions, due to as-
trometric binaries, are for high-precision astrometric mis-
sions. For simplicity, we assume rather rounded absolute

values of (AZ)yms and (Av)pms:

Absolute values assumed:

(Az)pms ~ 1 astronomical unit (AU),

(Av)gms ~ 1km/s.

These values are educated guesses, based both on the
statistics of binaries and on some experience with actual
data, and should describe at least the order of magnitude
of the effect correctly. (Az)yms = 1 AU means that the
cosmic error in the angular position is just equal to the
parallax of the star. The value of (Av)yms = 1 km/s
translates into a cosmic error of the proper motion of 0.2
mas/year divided by the distance r of the star in kpc.
The cosmic error in position is governed by long-period
binaries, while most of the cosmic error in velocity is due
to short-period binaries.

For a typical Hipparcos star with a distance r = 100 pc
(parallax p = 10 mas), we have:

Typical Hipparcos star:

(AZ)rms ~ 10 mas,

(Ap)rms ~ 2 mas/year.
Hence the cosmic error in position is larger than the mea-
suring error of Hipparcos, while the cosmic error in proper

motion is of the same order of magnitude as the measur-
ing error of Hipparcos.

For a typical GAIA star, we use a distance r = 1 kpc
(parallax p = 1 mas) and a measuring accuracy of 10 pas
in position and 10 pas/year in proper motion. We then
obtain:

Typical GAIA star:
(AZ)ms ~ 1 mas = 1000 pas
= 100 X measuring error,
(Af)rms ~ 0.2 mas/year = 200 pas/year
= 20 X measuring error.

It is obvious that the ‘cosmic errors’ are much larger than
the measuring errors for a very high-precision astrometry

mission like GAIA.

4. STRATEGY FOR HIGH-PRECISION
ASTROMETRY MISSIONS

The basic implication of the high ‘cosmic errors’ of posi-
tions, caused by the orbital motions of astrometric bina-
ries among the target stars of high-precision astrometry
missions like GAIA, is the following: The modelling of
the motion of each star should be as accurate as possi-
ble. Instead of a purely linear motion, one should try to
fit the observations either with an additional Keplerian
orbit (short-period binaries) or with additional acceler-
ation terms (binaries with longer periods). Oumly if the
modelling errors are kept small with respect to the mea-
suring errors, the full capacity of the mission, e.g., with
respect to the measurement of accurate parallaxes, can
be achieved. In order to be able to model the motion
of a star as accurate as necessary, the number of obser-
vations per star should be as large as possible: at least
50, better 100 or more observations per star. For many
astrometric binaries observed by Hipparcos, the number
of observations turned out to be too small for a reliable
orbit determination.

5. IMPLICATIONS OF THE COSMIC ERRORS
FOR APPLICATIONS OF THE RESULTS OF
HIGH-PRECISION ASTROMETRY MISSIONS

The ‘cosmic errors’ of positions and proper motions mea-
sured by high-precision astrometry should be properly
taken into account, if we consider which astronomical
problems can be solved by missions like GAIA. We shall

discuss here only a few examples.

(1) Galactic kinematics: A random cosmic error of about
1 km/s in the space velocity of stars is harmless for galac-
tic kinematics in general, e.g., for the determination of
the galactic rotation curve or for deriving velocity dis-
persions of groups of stars. Hence galactic kinematics on
large scales is not affected by the ‘cosmic errors’ in proper
motions (nor in position, of course).

(2) Open star clusters: The internal velocity dispersion of
most open star clusters is smaller than 1 km/s. Therefore,
the ‘cosmic errors’ in velocity (i.e., in proper motion) are
quite disturbing for studies of the internal kinematics of
open clusters. The small velocity dispersions derived for
some clusters from ground-based observations (e.g., about
0.1 km/s for the Ursa Major cluster by Wielen (1978a,b))
are nevertheless real, because ground-based astrometric
catalogues (such as the FK5) average over a very long in-
terval of time, thereby determining effectively the motion
of the center-of-mass of the stars.

(3) Reference frame using stars: The reference frame de-
rived and used by missions like GAIA will be defined by
quasars, which do not suffer from the ‘cosmic errors’ dis-
cussed in the earlier sections. If we would like to make
the reference system more dense by adding stars, then we
should be aware of the ‘cosmic errors’ in positions and
proper motions. One way to minimize the effect of the
‘cosmic errors’ is to choose as reference stars those objects
which have the largest distances r from the Sun. Since



the ‘cosmic errors’ are approximately constant in absolute
values, because the binary motion itself does not depend
on distance, the ‘cosmic errors’ in angular position and
in proper motion should decrease roughly proportional to
the parallax of the stars. While this is not strictly true
in a magnitude-limited sample, large distances r still im-
ply small ‘cosmic errors’ on average. Since GAIA itself is
providing accurate parallaxes, the choice of suitable ref-
erence stars with large distances r should be possible in
most areas of the sky.

6. GENERAL CONCLUSIONS

High-precision astrometry missions such as GAIA shall
give an enormous amount of scientific information on as-
trometric binaries. Some of the most interesting objects
may be re-observed from ground-based observatories as
spectroscopic binaries. Our knowledge on binaries in gen-
eral and on stellar masses would be very much improved.

Astrometric binaries represent an interesting challenge for
the planning of a high-precision astrometric mission, for
the data reduction procedure, and for some of the astro-
nomical applications.

REFERENCES

Brosche, P., Odenkirchen, M., Tucholke, H.-J., 1995, As-
tron. Nachr. 316, 35

Duquennoy, A., Mayor, M., 1991, Astron. Astrophys. 248,
485

Lindegren, L., 1979, in: European Satellite Astrome-
try, eds. C. Barbieri, P. L. Bernacca, Univ. di Padova,
p- 117

Soederhjelm, S., 1985, Astrophys. Space Sci. 110, 77
Tokovinin, A. A., 1993, Pisma Astron. Zh. 19, 638
Wielen, R., 1978a, Mitt. Astron. Ges. Nr. 43, 261
Wielen, R., 1978b, Bull. American Astron. Soc. 10, 408
Wielen, R., 1995, Astron. Astrophys. (in press)



