The Sun, planets, magnetosphere and plasma physics: **Outer Solar System**

Chauffray	UV exploration of the solar system	UV telesco Earth orbit
Roussos	The in-situ exploration of Jupiter's radiation belts	Jupiter syst
Blanc	Joint Europa Mission (JEM) A multiscale, multi-platform mission to characterize Europa's habitability and search for extant life	Jupiter syst
Prieto-Ballesteros	Searching for (bio)chemical complexity in icy satellites, with a focus on Europa	Jupiter syst
Thomas	A Comprehensive Investigation of the Galilean Moon, Io, by Tracing	Jupiter syst
Mitri	Exploration of Enceladus and Titan: Investigating ocean worlds' evolution and habitability in the Saturn System	Saturn syst
Rodriguez	Science goals and mission concepts for a future orbital and in situ exploration of Titan	Saturn syst
Choblet	Enceladus as a potential oasis for life: Science goals and investigations for future explorations	Saturn syst
Sulaiman	Enceladus and Titan: Emerging Worlds of the Solar System	Saturn syst
Mousis	In Situ Exploration of the Giant Planets	Saturn, Ura and Neptur
Fletcher	The scientific potential of missions to the Uranus and Neptune systems	Uranus and Neptune
Guillot	Uranus and Neptune are key to understand planets with hydrogen atmospheres	Uranus and Neptune

The Jovian system

JUNO 2016-2021

- Characterise Jupiter's atmosphere
- Look deep into Jupiter's atmosphere !
- Map Jupiter's magnetic and gravity fields (planet's deep structure)
- Explore and study Jupiter's magnetosphere near the planet's **poles**, especially the auroras

- habitability.

Europa Clipper Launch 2023 ? to explore Europa to investigate its

• not being sent to find life itself, but will instead try to answer specific questions about Europa's ocean, ice shell, composition and geology.

JUpiter ICy moons Explorer (JUICE) 2022-2033

- detailed investigations of Jupiter and its system in all their inter-relations and complexity
- emphasis on Ganymede as a planetary body and potential habitat.
- Investigations of Europa and Callisto

The Jovian system in Voyage 2050: the astrobiology roadmap at Europa

A mission dedicated to Europa only (Prieto-Ballesteros et al.): **Orbiter:** global characterisation+zones of interest

Lander: surface recognition, subsurface sample analysis and deep drilling (Ocean Explorer).

Jumpers: undertake geochemical and geological reconnaissance of the context around the lander at a local scale

samples.

A mission dedicated to Europa in Jovian system (Blanc et al.): **Orbiter + Lander:** an ESA-NASA collaboration

Focus on the AWL (Astrobiology Wet Laboratory): a liquid sample analysis facility to be developed by ESA with sensor provided by its member states.

EUROPA Credits: NASA/JPL-Caltech

Focus on the detection of large macromolecular material capable of structural and functional plasticity, as well as cell-like morphologies indicative of an extant biosphere (Prieto-Ballesteros et al.) Understand Europa as a complex system responding to Jupiter system forcing (Blanc et al.)

Ocean explorer: a submersible module to have access to direct

The Jovian system in Voyage 2050: unknown territories - lo

A comprehensive investigation of the Galilean moon lo: tracing the mass and energy flows in the lo-Jupiter system.

A mission dedicated to lo (Thomas et al.):

• Follow the energy

Energy sources in the deep interior Heat losses Electrodynamics interactions in lo's environment

Follow the mass

Surface changes Volcanic losses in lo's environment Study the species along lo's orbit

IO orbiter or IO multiple flybys

lo orbiter	ESA-only	Probably not easily achievable in an ESA cont this would require an L-class budget and maj technical development.
	ESA contribution to a NASA	Scalable for ESA but the feasibility of a NASA
	New Frontiers-type mission	orbiter would require significant additional s the US side.
Multi-Io flyby	ESA-only	There would be scepticism about whether ES perform such a mission within an M-class bu However, this is simpler than JUICE and prop NASA's Discovery programme suggest that th be feasible with very tight cost control. It is, achievable within an L-class budget.
	ESA contribution to a NASA New Frontiers-type mission	Scalable and clearly feasible should NASA de implement the recommendation of the last I Survey through a fly-by rather than the prop orbiter.
	ESA contribution to a NASA Discovery mission	This may be technically straightforward but p less so given the timescales and the PI-led na Discovery.

led udy on A coulc olitically

ture of

The Jovian system in Voyage 2050: unknown territories - Jupiter Radiations Belts

Uniqueness of Jupiter's radiation belts: Why don't we go and explore what we have tried to avoid in (almost) all previous missions?

- A mission dedicated to the radiation belts (Roussos et al.):

Cassini-Huygens: Mission to Saturn BY THE NUMBERS

Cassini-Huygens 1997-2017

- Characterise **Saturn's atmosphere**
- Explore Saturn's magnetosphere!
- Titan as a planetary object
- Study the icy moons (Enceladus!)
- Study the rings

The Saturnian system

Huygens descent: 2004

DragonFly (NF4) Arrival @ Titan - 2034

- Sample surface material to identify the chemical components and processes producing biologically relevant compounds
- Measure **bulk elemental surface** composition
- Monitor atmospheric and surface conditions
- characterize geologic features
- detect subsurface activity and structure

The Saturnian system in Voyage 2050: a mission to Titan

Image Credit: A. Karagiotas/T. Shalamberidze/NAI/JPL

(Rodriguez et al.): Titan's <u>atmosphere</u> • Titan's geology • Titan's habitability

(Sulaiman et al.):

- Magnetosphere

Mission(s) profile(s) - TBD

- At least one surface element

Which roadmap for Titan after Cassini-Huygens and Dragonfly?: its astrobiological potential, together with its complexity as planetary object, induces a strong interest from the community

• Titan's <u>atmosphere</u> Titan's Energy Budget Titan's Geology and Interior • Titan's Interaction with Saturn's

(Mitri et al.):

- Origin and evolution of the moon
- Habitability and potential for life of the deep ocean.
- Origin and evolution of Titan's lakes and seas
- Habitability and potential for life of Titan's lakes and seas
- Interior structure and processes of Titan

Impression of a 'plunge diving' manoeuvre by an aerial-aquatic aircraft inspired by thegannet seabird (inset). Insetadapted from Liang et al. (2013).

An orbiter

- Lander
- Drone/mini-drones
- Plane

The Saturnian system in Voyage 2050: a mission to Enceladus

(Choblet et al.):

- Emergence of an habitable world
- A global hydrothermal system
- Dynamics and exchange processes from the ocean to space
- Plume material as a window on the origin of life

(Sulaiman et al.):

- Enceladus's plume
- Enceladus' Interaction with Saturn's Magnetosphere
- Titan's Interaction with Saturn's Magnetosphere

Choblet et al. (2017), (Credits: Surface: NASA/JPL-Caltech/Space Science Institute; interior: LPG-CNRS/U. Nantes/U. Angers. Graphic composition: ESA)

Credits: Surface: NASA/JPL - Caltech/Space Science Inst.; Interior: LPG-CNRS/Univ. Nantes/Univ. Angers. Graphics composition: ESA

Which roadmap for Enceladus after Cassini-Huygens?: its astrobiological potential induces a strong interest from the community

(Mitri et al.):

- Origin and evolution of the moon
- Habitability and potential for life of the deep ocean.
- Interior structure and processes of Enceladus

Mission(s) profile(s) - TBD

- Multiple Flybys
- **Enceladus** Orbiter
- Orbiter + Lander
- Sample return?

	Multiple		Enceladus	Lander(s)		Sample	Enceladu	Enceladus orbiter	
	flyk	oys	orbiter	single	multi	return	Lander(s)	Sample R	
1-Origin in the	M-	L-class	Saturn tour				Saturn tour	Saturn tour	
Saturn system	class								
2-Hydrothermal									
context									
3- From ocean to				SPT					
space				landing					
4- Biosignatures									
in plume materials									
Mission profiles	ESA-lea	1	ESA-led	- ESA-led L		ESA M-	- ESA-led L mission		
	M- or L	-	L-mission	mission		mission +	+ int. partner contr.		
	mission	ו		- ESA M-Mission		int.	- Int. partner-led mission		
				+ int. partner		partner	+ ESA M-class mission		
Relevant for science questions :		Not	Partly	Mos	stly Fu	lly			

Voyage 2050: what about the giant planets?

(Chaufray et al.): a new multi-object UV observatory after Hubble

- Planetary surfaces (mostly Mars and Venus)
- Planetary atmospheres (includ. Titan and Pluto) with a focus on the Lyman-alpha bulge at Jupiter
- Planetary magnetospheres and auroral emissions of giant planets

(Champain et al.) : build a THz observatory on the moon to observe the atmosphere of planets and satellite

Which roadmap for giant planet exploration? is *in situ* exploration the only « missing clue » for these planets?

Voyage 2050: Uranus and Neptune science cases

Our 20th Century Views of the Ice Giants

Neptune & Triton September 3, 1989

Credit: NASA/JPL/E. Lakdawalla

A mission to these remote systems: orbiter, lander, probe...?

Fletcher et al.	Guillot
ORIGIN	Transport processes in hydrogen atmospheres
MOSPHERE	Structure, interior composition and dynamo
	Provide keys to understand the origin of the solar system
N WORLD'S	Relations to exoplanets
RINGS	

HELIOPHYSICS

EXOPLANETS

The Sun, planets, magnetosphere and plasma physics: **Outer Solar System**

UV telescope THz observatory on the moon

JWST

Hubble Space Telescope

Europa missions lo orbiter/clipper **Radiation belts** explorer

JUICE **Europa Clipper**

Titan missions **Enceladus missions** Saturn's probes

Dragonfly

Cassini-Huygens

Voyager

