

INAF-Osservatorio Astronomico di Bologna

P.Ranalli, C.Vignali, N.Cappelluti, R.Gilli, K.Iwasawa, G. Lanzuisi, F.J. Carrera, M. Brusa, F. Vito, I. Georgantopoulos, E.Rovilos, F.Fiore, F.Civano, W.N. Brandt, P.Tozzi, X.Barcons, S.Puccetti, S.Falocco, M. Paolillo, N.Castello-Mor

~3 Ms XMM image of the Chandra Deep Field South

 $\sim 0.3 \text{ deg}^2$

Goals:

Resolve the XRB in the 5-10 keV band

Fine spectroscopy of distant heavily obscured AGN

> red = 0.4 -1 keV green = 1 - 2 keV blue = 2 -8 keV

XMM-CDFS deep survey science goals

About 60% of the hard 5-10 keV XRB was resolved Ranalli+13

Unfortunately the background level was higher than expected

AGN "fine" spectroscopy beyond the local Universe evolution, feedback, ...

Census of highly obscured and Compton thick AGN Iron line properties Variability

•••

The X-ray sample(s)

"2-10 keV selected" flux limited, widely different spectral quality

The obscured fraction increases toward high-z for luminous (> 10⁴⁴ erg s⁻¹) AGN (cfr. ~20-30% at z~0 Burlon+11

Distant Compton thick in the CDFS

Chandra Results

Comparisons

ID210	us	T06	C11	B12	I12	G13	_
30	heavily	_	_	_	heavily	_	- FLAT
44	unabsorbed	CThick	_	heavily	-	_	< 5 x 10-15
48	moderately	_	_	_	_	heavily	Moderate
64	heavily	_	_	_	heavily	_	
66	heavily	_	_	_	_	secure-CThick	
106	moderately	CThick	_	heavily	_	_	< 5 x 10-15
114	heavily	_	_	-	heavily	_	< 5 x 10-15
144	heavily	CThick	CThick	heavily	heavily	secure-CThick	< 5 x 10-15
147	heavily	CThick	CThick	heavily	_	secure-CThick	
155	moderately	CThick	_	heavily	_	< 5 x 10-15 Ref	lection Dominated
180	heavily	_	_	_	heavily	heavily	
214	heavily	_	_	_	_	heavily Nu	STAR Heavily
222	unabsorbed	_	_	_	-	heavily	FLAT Í
245	heavily	_	_	_	heavily	heavily	< 5 x 10-15
289	moderately	_	_	_	_	heavily Ref	lection Dominated
324	unabsorbed	_	_	_	-	secure-CThick	
							-

109

Reflection Dominated

Compton thick Fraction

At the limiting fluxes of the XMM and Chandra spectral surveys the number of Compton Thick (CT) AGN is in fairly good agreement with the XRB model expectations.

Looking forward for NuSTAR deep surveys spectral analysis (Zappacosta+;Del Moro+ in preparation) to understand the evolution of the CT obscuring gas and implications for models

Redshift from the X-ray spectrum

X-ray redshift from the Kalpha Iron Edge (7.11 keV)

z = 2.03+-0.04

Georgantopoulos+13

 $F_X \sim 1.5 \times 10^{-14}$ L_X ~ 4 x 10⁴⁴ N_H~5-6×10²³ cm⁻²

> Detected by NuSTAR in the 8-24 keV band (but not < 8 keV)

The most distant AGN detected above 10 keV

Del Moro+14

Brightest sources iron line variability

Iron line profile

Friday, May 13, 16

Iron line profile

Low Luminosity Normalised flux 0.2 52 5 Energy (keV) QSO subsample High Luminosity Normalised flux 0.2 Falocco+15 02

5

10

Seyfert subsample

"Tentative" evidence of a broad component cfr. Brusa+05 Chaudary+12 and many others

Friday, May 13, 16

Lessons learned & Perspectives

Pushing even deeper is not rewarding especially with 7 Ms Chandra

Good quality spectra are absolutely needed for many science goals

 N_H distribution above 10^{24} cm⁻²: relative fraction of reflection dominated vs XRB contributors and their volume emissivity/space density (cfr.Akylas+12;Fabian+16;Esposito&Walter16, XRB is mostly due to disk reflection rather than CT)

UFO/Outflows at high-z: feedback at work

Iron line, absorption and continuum variability

•••

XMM 2016-2026

If I have 10 - 20 Ms

Identify a well defined sample of molecular outflows and UFO only two examples (Tombesi+15;Feruglio+15) and/or high-redshift interesting objects (cfr. Massimo Cappi review)

Large sample of "representative" heavily obscured AGN,

Iron line intensity and profile distribution beyond the local Universe

COSMOS, (Lanzuisi) XSERVS (Brandt), XXL(Pierre), Stripe82 (La Massa) are excellent starting points.