Chandra - XMM-Newton Synergies

Now and in the Future

Belinda Wilkes Director Chandra X-ray Center

9th May 2016

Chandra: 16.5 years and counting! Detailed engineering review showed no show-

stoppers to 10(+) more years of observing

Little red or yellow!

XMM-Newton: the Next Decade

Chandra Challenges

• Thermal degradation:

- Limits dwell time over most solar pitch angles
- Long exposures generally split
- Complex scheduling limits constrained time to maintain an efficient schedule
- Contaminant build-up on ACIS OBF

 Reduced A_{eff} < 2 keV by ~80% since launch
 Longer exposures for science requiring soft data

Joint Chandra & XMM-Newton Observing Time

- Proposals whose science question(s) require data from both observatories
- Up to 400ks time allocated by each observatory on the other
- 217 programs since Chandra Cycle 4 including all science categories
- **PLUS**: many projects which combine and/or compare results across both observatories

Capabilities of XMM-Newton and Chandra

	XMM-Newton	Chandra
Field-of-View	~30′*30 ′	16'*16'
Effective Area	4500 cm ²	800 cm ²
Spatial Resolution	6″	0.5″
Grating Spectroscopy	0.35-2.5 keV Simultaneous	0.08-10 keV
Spectral Resolution	200-800	200-1000
Timing Resolution	30µs (+imaging and spectra)	16μs (HRC) (+imaging or spectra)
Background	10 ct s ⁻¹ keV ⁻¹ srad ⁻¹	0.25 ct s ⁻¹ srad ⁻¹

Synergies

- Large Area Surveys:
 Imaging Large Objects:
 Imaging Crowded Regions:
 Source Identification:
 Detecting Complex Structure:
 High S/N Imaging Spectroscopy:
- Grating Spectroscopy:
- Rapid Timing:

XMM-Newton XMM-Newton Chandra Chandra Chandra XMM-Newton ?? Science ?? Science

Overlap – common in most other wavebands:

- Independent confirmation/not of results
- Complementary monitoring of variables and transients
- Coordinate on DDTs to avoid duplication

XMM-Newton Spectra of Red Quasars

2MASS1049+5837 (z=0.115)

- Chandra (5ks):
 - HR~0.6 → Γ~0.4,N_H~4x10²² cm⁻²
- XMM-Newton (26 ks)
 - Power Law (PL), Γ=1.8,
 N_H~4x10²³ cm⁻²
 - ~2% Scattered PL
 - Line emission from extended photoionized plasma
 - Reflection component (R~2) and Fe Kα

Wilkes, Pounds & Schmidt 2008

M87: BCG of Virgo Cluster

Image: courtesy Bill Forman

- ROSAT: whole galaxy+, some structure
- XMM-Newton: whole galaxy, sloshing structures
- Chandra: central regions, detailed structure, resolves edges, filaments, voids etc.
- e.g. XMM-Newton selects bright outer regions for detailed Chandra study of filaments

SNR Physics

Courtesy Fred Seward

Kosenko et al. 2010

RGS spectrum + 3*NEI model

LMC SNR 0519-69.0: Chandra

- RGS & EPIC, ACIS spectra: multiple NEI emission line model
- Forward shock velocity ~2770 kms⁻¹
- Location: radial stratification O, IME, Fe
- Derive fractional masses in various regions

Large Area Surveys: e.g. COSMOS

Courtesy: Francesca Civano

- XMM-Newton (July 2006):
 2°, 1.4 Ms (total)
 50 ks depth
- Chandra (Jan 2014):
 - 2.2[°] , 4.6 Ms (total)
 - 180 ks depth
 - 4000 sources
 - Resolves 10% of XMM sources into multiples
 - Reaches 5* depth

Large Area Surveys: e.g. COSMOS

Courtesy: Francesca Civano

XMM-Newton (July 2006):
 2°, 1.4 Ms (total)
 50 ks depth

- Chandra (Jan 2014):
 - 2.2[°], 4.6 Ms (total)
 - 180 ks depth
 - 4000 sources
 - Resolves 10% of XMM sources into multiples
 - Reaches 5* depth

Galaxy Groups: FRI NGC 4261

O'Sullivan et al. (2011)

Chandra soft-band

- Radio jets inflate large cavities
- Rims of compressed hot gas surround cavities
- Cool core, r~10 kpc, T~0.6 keV
- Spectra do not confirm shocks

8th May 2016

Future: X-ray Legacy

- Assess XMM-Newton and Chandra archives for Legacy (using source catalogs, by science area):
 - Missing "Rosetta Stone" sources (in any waveband)
 - Incomplete samples of sources, e.g. 3CR, PG (AGN)
 - Multi-wavelength Survey fields
 - Confused XMM-Newton fields needing Chandra data
 - Athena (& X-ray Surveyor) preparatory science
- Expand joint program(s) to include Large Projects
- HST, Spitzer, ALMA, NuSTAR etc. "Legacy" science, e.g. Frontier Fields

Future: Multi-λ Opportunities

- ALMA: AGN outflows, star forming regions
- LOFAR and/or VLASS: observe one/more survey fields to study related X-ray emission
- E-ROSITA (2017): follow-up, e.g. clusters
- JWST (2018): CT AGN, galaxy structure, highredshift galaxies etc.
- LSST: strategies to follow-up transients/variables

Chandra Workshop 2016

"Chandra Science for the Next Decade" 16-19 Aug, Cambridge MA

cxc.cfa.harvard.edu/cdo/next_decade2016/

Please join us to continue the conversation we are starting this week!

