We report below on the preliminarily results obtained from a 150 ks-long observational campaign on the Supergiant Fast X-ray Transient prototype IGR J17544-2619. The observations have been carried out simultaneously with NuSTAR and XMM-Newton.

The X-ray Spectral Variability

A refined spectral analysis is being carried out selecting the time intervals of the different flares during which a significant variation of the hardness ratio was measured (see figures on page 9). By using NuSTAR data alone, the rise of the first flare seems to be preceded by a significant increase in the absorption column density (see figure above). An intriguing absorption feature at 7 keV is detected during one of the flares during the rise of the third flare was not observed due to orbital constraints.

Comparing a Ray Spectra During the Outburst and During Quiescence

The figures above show the combined simultaneous XMM-Newton and NuSTAR spectra accumulated during the first 200 ks of the observation when the source was quiescent and then during the last 7 ks corresponding to the outburst period. The best fit model is obtained with an absorbed BSH (leftmost figure; Romano et al. 2015, A&A, 576, 4), the presence of a centrifugal gating (Bozzo et al. 2008, ApJ, 683, 1031), or the sub-sonic settling accretion regime (second figure from the left; Shakura et al. 2012, MNRAS, 420, 216), the effect of magnetic and centrifugal gating (Bozzo et al. 2009, ApJ, 683, 1031), or the accretion from an extremely clumpy wind (Bozzo et al. 2011, A&A 531, 198).

CONTRIBUTORS

This work is being currently carried out in collaboration with: V. Balerao, P. Pradhan, J. Tomisk, P. Romano, C. Ferrigno, M. Falanga, L. Stella, L. Oskinova, S. Campa, A. Manousakis, R. Walter, et al.