What X-ray images and CCD energy resolution can tell us about the physics of ICM

E.Churazov (MPA)

Can we measure gas velocities?

We know that the Perseus cluster is not at rest

Direct velocity measurements

Calorimeters [ASTRO-H]

60 km/s Indirect velocity measurements 140 km/s

Subsonic motions in the fluid

Passive scalar gradients make gas motions visible

EC XMM Workshop **El Escorial** 2005

- 1 part Irish cream liqueur
- 1 part Grand Marnier orange liqueur

Increasing velocity

Relation between density and velocity perturbations in stratified atmospheres

Zhuravleva+,14a

Gaspari+,14

Fully relaxed cluster

Slightly disturbed cluster

V=0

V≠0

Disturbed image => V \neq 0. We can link V and δ n/n.

Getting gas velocity power spectrum from images

Velocity power spectra in Perseus and M87

Heating rate

 $E(k) = K_0 \varepsilon^{2/3} k^{-5/3}$

Cooling= $n^2 \Lambda(T)$ Heating = $C \rho V_{1,k}^3 k$

Zhuravleva+,14b

Can we prove that we see turbulent cascade?

Can we prove that we see entropy variations? (isobaric fluctuations)

Yes, by arithmetic manipulations with X-ray images

"Xarithmetic", EC+,2016

Thermal bremsstrahlung spectrum (with Gaunt factor)

Arithmetic with X-ray images "Xarithmetic"

$$A_{s}(x, y) = \frac{I_{s} - I_{s,0}}{I_{s,0}}$$
$$A_{h}(x, y) = \frac{I_{h} - I_{h,0}}{I_{h,0}}$$

 $B(x, y) = C_1 A_s + C_2 A_h$

For any given type of perturbations (isothermal, isobaric, adiabatic) we know relative amplitudes of perturbations in A_s and A_h . We can choose C_1 and C_2 to eliminate them.

See also Forman+, 2007

EC+, 2016

Soft and hard band images

Manipulated images

Isobaric (entropy) perturbations dominate

Conclusions

We can measure velocity power spectra from images In a statistical sense Nowhere near +/- 10 km/s

If we assume that we do see turbulent cascade => enough heating

We can measure effective equation of state of perturbations with two images

XMM+10 wish list: add background to the standard pipeline products