

Variability of the soft X-ray excess in IRAS 13224–3809

E. Kammoun¹, I. Papadakis², and B. Sabra³ ¹SISSA, Trieste - Italy (ekammoun@sissa.it); ²University of Crete, Heraklion - Greece; ³Notre Dame University - Louaize, Zouk Mosbeh - Lebanon

(Kammoun et al., 2015, A&A, 582, 40)

Objective

X-ray spectra of Active Galactic Nuclei (AGN) are characterised by a power-law (PL) like shape at energies above $\sim 2 \text{ keV}$. Many AGNs reveal the presence of an excess in their spectra above the extrapolation of the PL to softer energies. The origin of this excess component, known as the soft X-ray excess (SXE), has been debated since its discovery: smeared absorption model [3], relativistically blurred disc reflection model [1], and intrinsic emission by an optically thick disc powering the SXE [2]. The aim is to constrain the origin of the SXE in a *model-independent* fashion by means of a variability analysis.

Method

We apply the flux-flux plot (FFP) method to the archival XMM-Newton observations (Obs. 1–5) of the NLS 1 galaxy IRAS 13224-3809.

- 1. The 1.7–3 keV band was chosen as a $proxy\, {\rm of}$ the continuum power-law emission.
- 2. The 0.2–1.7 keV band was divided into 11 energy sub-bands.
- 3. Light curves in the 12 sub-bands were binned with three time bin sizes $\Delta t_{\rm bin}=1,\,4,\,{\rm and}\,8\,{\rm ks}.$
- 4. We plot the "soft" vs the "continuum" band count rates (FFP). They are highly correlated, in all energy bands.

The effects of $\Delta t_{ m bin}$

The "high-flux" part of the FFPs were fitted with a PL relation: $y = \alpha x^{\beta}$

An *excess* is seen above the extrapolation of the best-fit PL to low counts, for the three $\Delta t_{\rm bin}$.

The best-fit α and β parameters are not consistent for the various $\Delta t_{\rm bin}$. This could be explained by

We decided to study only the 1 ks binned FFPs.

References

- Crummy J., Fabian A. C., Gallo L., & Ross R. R., 2006, MNRAS, 365, 1067
- [2] Done, C., Davis, S. W., Jin, C., Blaes, O., & Ward, M., 2012, MNRAS, 420, 1848–186
 [3] Gierliński, M., & Done, C. 2006, MNRAS, 371, L16

"Constant" component?

We modelled the FFPs by a power-law plus constant (PLc) model:

$$y = \alpha_{\rm PLc} x^{\beta_{\rm PLc}} + c$$

• $\beta_{\rm PLc} < 1$, below $\simeq 1 \, \rm keV$

 \Rightarrow Presence of an intrinsic spectral variations in the continuum.

• Below 1 keV, c > 0 for Obs.1–3, c < 0 for Obs.4, and $c \approx 0$ in Obs.5. Above 1 keV, $c \simeq 0$ for all observations.

The *non-zero* c's may be an indication of a constant soft-excess component.

0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.01 0.00

The spectrum derived from positive c_{obs} 's cannot be explained by the disc intrinsic emission.

-6.0

Modelling the FFPs

We created model FFPs, where the soft band flux was assumed to be equal to the sum of the continuum plus the soft-excess component flux.

• For the model continuum flux we assumed: $F_{\rm PL,mod}(E) = NE^{-\Gamma}$, where $\Gamma \propto N^{0.1}$.

• For the model soft-excess flux we assumed: $F_{\rm ex,mod}(E) = A(E) F_{\rm PL,mod}^{0.46}$, for $E \leq 0.9 \, {\rm keV}$, and $F_{\rm ex,mod}(E) = 0$ at higher energies. Then the total soft flux was derived:

 $F_{\text{mod}}(E) = F_{\text{PL,mod}}(E) + F_{\text{ex,mod}}(E)$

The model FFPs (F_{mod} vs $F_{1.7-3\text{keV,sim}}$) are *well fitted* by a PLc model. We detect positive c's although the soft-excess component is *not* constant.

- (1) The best-fit model β_{mod} and $c_{\text{mod}} < c_{\text{obs}}$ are broadly consistent with the data (see figure above).
- (2) **BUT** we cannot reproduce negative *c*'s (hint of a possible *warm and variable absorber* in the source?).

Conclusions

Our results support the hypothesis that most of the soft-excess at energies below $\sim 0.9 \text{ keV}$ is due to X-ray reflection in IRAS 13224-3809. The soft excess is not constant, but it rather responds to the primary X-ray variations, although with a smaller amplitude (as expected for a smeared component). More work is necessary to model the expected variability in the case of a variable, warm absorber.

Large amplitude short time scale variability. and Intrinsic non-linear flux-flux relation.